최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Journal of Korean Society of Industrial and Systems Engineering = 한국산업경영시스템학회지, v.44 no.4, 2021년, pp.113 - 127
박동준 (부경대학교 통계학과) , 오형술 (강원대학교 산업경영공학과) , 김호균 (동의대학교 산업경영공학과) , 윤민 (부경대학교 응용수학과)
Topic modeling has been receiving much attention in academic disciplines in recent years. Topic modeling is one of the applications in machine learning and natural language processing. It is a statistical modeling procedure to discover topics in the collection of documents. Recently, there have been...
Albalawi, Rania, Yeap, Tet. H., and Benyoucef, Morad., Using Topic Modeling Methods for Short-text Data: A Comparative Analysis, Frontiers in Artificial Intelligence, 2020, 3, pp. 1-14.
Arun, R. Suresh, V., Mdahavan, C. E. V, and Murty, M. N., On Finding the Natural Number of Topics with Latent Dirichlet Allocations: Some Observation, PAKDD, Springer-Verlag, 2010, pp. 391-402.
Barde, B. V. and Bainwad, A. M., An Overview of Topic Modeling Methods and Tools, International Conference on Intelligent Computing and Control Systems, 2017, ICICCS, pp. 745-750.
Blei, D. M., Ng, A. Y., and Jordan, Michael, I., Latent Dirichlet Allocation, Journal of Machine Learning Research, 2003, Vol. 3, pp. 993-1022.
Chang, J., Boyd-Graber, J., Gerrish, S., Wang, C., and Blei, D. M., Reading Tea Leaves: How Humans Interpret Topic Models, In Advances in Neural Information Processing Systems, 2009, pp. 288-296.
Choi, J. W., Jang, J. J., Kim, D. H., and Yoon, J. H., Identifying Interdisciplinary Trends of Humanities, Sociology, Science and Technology Research in Korea Using Topic Modeling and Network Analysis, Journal of Society of Korea Industrial and Systems Engineering, 2019, Vol. 42, No. 1, pp. 74-86.
Chuang, J., Manning, C. D., and Heer, J, Termite: Visualization Techniques for Assessing Textual Topic Models, http://www.researchgate.net/publication/254004974.
Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., and Harshman, R., Indexing by Latent Semantic Analysis, Journal of the American Society for Information Science, 1990, Vol. 41, No. 6, pp. 391-407.
Deisenroth, M. P., Faisal, A. A., and Ong, C. S., Mathematics for Machine Learning, Cambridge University Press, 2020.
Dinakar, K., Chen, J., Lieberman, H., Picard, R., and Filbin, R., Mixed Initiative Real-Time Topic Modeling & Visualization for Crisis Counseling, Proceedings of the 20th International Conference on Intelligent User Interfaces, 2015, pp. 417-426.
Hearst, M., What is Text Mining?, SIMA, https://www.jaist.ac.jp/~bao/MOT-Ishikawa/Furt-herReadingNo1.pdf.
Hong, J. L., Yu, M. R., and Choi, B. R., An Analysis of Mobile Augmented Reality App Reviews Using Topic Modeling, Journal of Digital Contents Society, 2019, Vol. 20, No. 7, pp. 1417-1427.
Jin, M. and Ko, H. K., Analysis of Trends in Mathematics Education Research Using Text Mining, Journal of Korean Society Mathematical Education Series E, 2019, Vol. 33, No. 3, pp. 275-294.
Kim, J. E. and Baek, S. G., Analysis of Issues on the College and University Structural Reform Evaluation Using Text Big Data Analytics, Asian Journal of Education, 2016, Vol. 17, No. 3 pp. 409-436.
Kim, M. K., Lee, Y., and Han, C. H., Analysis of Consulting Research Trends Using Topic Modeling, Journal of Society of Korea Industrial and Systems Engineering, 2017, Vol. 40, No. 4, pp. 46-54.
Kim, S. K. and Jang, S. Y., A Study on the Research Trends in Domestic Industrial and Management Engineering Using Topic Modeling, Journal of the Korea Management Engineers Society, 2016, Vol. 21, No. 3, pp. 71-95.
Korean Society of Industrial and Systems Engineering, http://www.ksie.or.kr.
Landauer, T. K., Foltz, P. W., and Laham, D., An Introduction to Latent Semantic Analysis, Discourse Processes, 1998, Vol. 25:2-3, pp. 259-284.
Langley, P., Selection of Relevant Features in Machine Learning, AAAI Technical Report FS-94-02, 1994, pp. 127-131.
Mashey, J., Big Dat and the Next Wave of Infrastress, https://static.usenix.org/event/usenix99/invited_talks/mashey.pdf.
McCallum, A. K., MALLET: A Machine Learning for Language Toolkit, 2002, http://mallet.cs.umass.edu/about.php.
Maier, D., Waldherr, A., Miltner, P., Wiedemann, G., Niekler, A., Keinert, A., Pfetsch, B., Heyer, G., Reber, U., Jaussler, T., Schmid-Petri, H., and Adam, S., Applying LDA Topic Modeling in Communication Research: Toward a Vaid and Reliable Methodology, Communication Methods and Measures, 2018, Vol. 12, No. 2-3, pp. 93-118.
Mulunda, C. K., Wagacha, P. W., and Muchemi, L., Review of Trends in Topic Modeling Techniques, Tools, Inference Algorithms and Applications, The 5th International Conference on Soft Computing and Machine Intelligence, 2018, pp. 28-37.
Newman, D., Lau, J. H., Grieser, K., and Baldwin, T., Automatic Evaluation of Topic Coherence, Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, 2010, June, pp. 100-108.
Park, I. C., Kim, S. H., and Yoon, B. U., Technology Clustering Using Textual Information of Reference Titles in Scientific Paper, Journal of Society of Korea Industrial and Systems Engineering, 2020, Vol. 43, No. 2, pp. 25-32.
Park, J. H. and Oh, H. J., Comparison of Topic Modeling Methods for Analyzing Research Trends of Archives Management in Korea: Focused on LDA and HDP, Korean Library And Information Science Society, 2017, Vol. 48, No. 4, pp. 235-258.
Park, S. U. and Lee, B. R., Trend Analysis of Korean Cultural Policy Studies Using Text Mining, The Korean Governance Review, 2017, Vol. 24, No. 3, pp. 95-119.
Ramage, D., Rosen, E., Chuang, J., Manning, C. D., and McFarland, D. A., Topic Modeling for the Social Sciences, NIPS Workshop, 2009, pp. 1-4.
Rehurek, R. and Sojka, P., Software Framework for Topic Modelling with Large Corpora, The LREC Workshop on New Challenges for NLP Frameworks, 2010, pp. 45-50.
Seo, H. B. and Lee, H. Y., PSS Research Trend, Proceeding of Spring Conference in the Korea Society for Simulation, 2017, pp. 997-1017.
Siever, C. and Shirley, K. E., LDAvis: A Method for Visualizing and Interpreting Topics, Proceedings of the Workshop on Interactive Language Learning, Visualization, and Interfaces, 2014, pp. 63-70.
Teh, Y., Whye, J., Michaerl, B., Mattew. J., and Blei, D. M., Hierarchical Dirichlet Processes, Journal of the American Statistical Association, 2006, Vol. 101, pp. 1566-1581.
Vayansky, I. and Kumar, S. A. P., A Review of Topic Modeling Methods, Information Systems, 2020, Vol. 94, pp. 1-15.
Yoon, S. Y. and Yoon, D. K., A Trend Analysis on Disaster and Safety Management Using Topic Modeling, Journal of the Korean Society for Geospatial Information Science, 2017, Vol. 25, No. 3, pp. 75-85.
Zhao, W., Chen, J. J., Perkins, R., Liu, Z., Ge, W., Ding, Y., and Zou, W., A Heuristic Approach to Determine an Appropriate Number of Topics in Topic Modeling, BMC Bioinformatics, 2015, Vol. 16, No. S8, pp. 1-10.
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.