$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 한국산업경영시스템학회지 연구 주제의 토픽모델링 분석 비교: 1978년~99년 논문을 중심으로
Topic Modeling Analysis Comparison for Research Topic in Korean Society of Industrial and Systems Engineering: Concentrated on Research Papers from 1978~1999 원문보기

Journal of Korean Society of Industrial and Systems Engineering = 한국산업경영시스템학회지, v.44 no.4, 2021년, pp.113 - 127  

박동준 (부경대학교 통계학과) ,  오형술 (강원대학교 산업경영공학과) ,  김호균 (동의대학교 산업경영공학과) ,  윤민 (부경대학교 응용수학과)

Abstract AI-Helper 아이콘AI-Helper

Topic modeling has been receiving much attention in academic disciplines in recent years. Topic modeling is one of the applications in machine learning and natural language processing. It is a statistical modeling procedure to discover topics in the collection of documents. Recently, there have been...

Keyword

참고문헌 (45)

  1. Albalawi, Rania, Yeap, Tet. H., and Benyoucef, Morad., Using Topic Modeling Methods for Short-text Data: A Comparative Analysis, Frontiers in Artificial Intelligence, 2020, 3, pp. 1-14. 

  2. Arun, R. Suresh, V., Mdahavan, C. E. V, and Murty, M. N., On Finding the Natural Number of Topics with Latent Dirichlet Allocations: Some Observation, PAKDD, Springer-Verlag, 2010, pp. 391-402. 

  3. Barde, B. V. and Bainwad, A. M., An Overview of Topic Modeling Methods and Tools, International Conference on Intelligent Computing and Control Systems, 2017, ICICCS, pp. 745-750. 

  4. Blei, D. M., Ng, A. Y., and Jordan, Michael, I., Latent Dirichlet Allocation, Journal of Machine Learning Research, 2003, Vol. 3, pp. 993-1022. 

  5. Chang, J., Boyd-Graber, J., Gerrish, S., Wang, C., and Blei, D. M., Reading Tea Leaves: How Humans Interpret Topic Models, In Advances in Neural Information Processing Systems, 2009, pp. 288-296. 

  6. Cho, G. H., Lim, S. Y., and Hur, S., An Analysis of the Research Methodologies and Techniques in the Industrial Engineering Using Text Mining, Journal of the Korean Institute of Industrial Engineers, 2014, Vol. 40, No. 1, pp. 52-59. 

  7. Cho, J. Y. and Cho, K. W., Topic Modeling on the Adolescent Problem Using Text Mining, Journal of the Korea Institute of Information and Communication Engineering, 2018, Vol. 22, No. 12, pp. 1589-1595. 

  8. Cho, S. G. and Kim, S. B., Finding Meaningful Pattern of Key Words in IIE Transactions Using Text Mining, Journal of the Korean Institute of Industrial Engineers, 2012, Vol. 38, No. 1, pp. 67-73. 

  9. Choi, J. W., Jang, J. J., Kim, D. H., and Yoon, J. H., Identifying Interdisciplinary Trends of Humanities, Sociology, Science and Technology Research in Korea Using Topic Modeling and Network Analysis, Journal of Society of Korea Industrial and Systems Engineering, 2019, Vol. 42, No. 1, pp. 74-86. 

  10. Chuang, J., Manning, C. D., and Heer, J, Termite: Visualization Techniques for Assessing Textual Topic Models, http://www.researchgate.net/publication/254004974. 

  11. Chung, K. S., Sin W. S., Baek, D. H., and Ju, Y. J., Review on the TQM Literature Appeared in KSQM, Journal of Korean Society for Quality Management, 2016, Vol. 44, No. 1, pp. 43-60. 

  12. Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., and Harshman, R., Indexing by Latent Semantic Analysis, Journal of the American Society for Information Science, 1990, Vol. 41, No. 6, pp. 391-407. 

  13. Deisenroth, M. P., Faisal, A. A., and Ong, C. S., Mathematics for Machine Learning, Cambridge University Press, 2020. 

  14. Dinakar, K., Chen, J., Lieberman, H., Picard, R., and Filbin, R., Mixed Initiative Real-Time Topic Modeling & Visualization for Crisis Counseling, Proceedings of the 20th International Conference on Intelligent User Interfaces, 2015, pp. 417-426. 

  15. Hearst, M., What is Text Mining?, SIMA, https://www.jaist.ac.jp/~bao/MOT-Ishikawa/Furt-herReadingNo1.pdf. 

  16. Hofmann, T., Unsupervised Learning by Probabilistic Latent Semantic Analysis, Machine Learning, 2001, 42, pp. 177-196. 

  17. Hong, J. L., Yu, M. R., and Choi, B. R., An Analysis of Mobile Augmented Reality App Reviews Using Topic Modeling, Journal of Digital Contents Society, 2019, Vol. 20, No. 7, pp. 1417-1427. 

  18. Jeong, B. K. and Lee, H. Y., Research Topics in Industrial Engineering 2001-2015, Journal of the Korean Institute of Industrial Engineers, 2016, Vol. 42, No. 6, pp. 421-431. 

  19. Jin, M. and Ko, H. K., Analysis of Trends in Mathematics Education Research Using Text Mining, Journal of Korean Society Mathematical Education Series E, 2019, Vol. 33, No. 3, pp. 275-294. 

  20. Kim, J. E. and Baek, S. G., Analysis of Issues on the College and University Structural Reform Evaluation Using Text Big Data Analytics, Asian Journal of Education, 2016, Vol. 17, No. 3 pp. 409-436. 

  21. Kim, M. K., Lee, Y., and Han, C. H., Analysis of Consulting Research Trends Using Topic Modeling, Journal of Society of Korea Industrial and Systems Engineering, 2017, Vol. 40, No. 4, pp. 46-54. 

  22. Kim, S. K. and Jang, S. Y., A Study on the Research Trends in Domestic Industrial and Management Engineering Using Topic Modeling, Journal of the Korea Management Engineers Society, 2016, Vol. 21, No. 3, pp. 71-95. 

  23. Kim, S. Y., Analysis of Research Trends in SIAM Journal on Applied Mathematics Using Topic Modeling, Journal of the Korea Academia-Industrial Cooperation Society, 2020, Vol. 21, No. 7, pp. 607-615. 

  24. Korean Society of Industrial and Systems Engineering, http://www.ksie.or.kr. 

  25. Landauer, T. K., Foltz, P. W., and Laham, D., An Introduction to Latent Semantic Analysis, Discourse Processes, 1998, Vol. 25:2-3, pp. 259-284. 

  26. Langley, P., Selection of Relevant Features in Machine Learning, AAAI Technical Report FS-94-02, 1994, pp. 127-131. 

  27. Lee, K. H., Jung, H. J., and Song, M., Weighted Subject - Method Network Analysis of Library and Information Science Studies, Journal of the Korean Society for Library and Information Science, 2015, Vol. 49, No. 3, pp. 457-488. 

  28. Lee, S. B., Analysis of Research Trends in Journal of Korean Society for Quality Management by Text Mining Processing, Journal of Korean Society for Quality Management, 2019, Vol. 47, No. 3, pp. 597-613. 

  29. Mashey, J., Big Dat and the Next Wave of Infrastress, https://static.usenix.org/event/usenix99/invited_talks/mashey.pdf. 

  30. McCallum, A. K., MALLET: A Machine Learning for Language Toolkit, 2002, http://mallet.cs.umass.edu/about.php. 

  31. Maier, D., Waldherr, A., Miltner, P., Wiedemann, G., Niekler, A., Keinert, A., Pfetsch, B., Heyer, G., Reber, U., Jaussler, T., Schmid-Petri, H., and Adam, S., Applying LDA Topic Modeling in Communication Research: Toward a Vaid and Reliable Methodology, Communication Methods and Measures, 2018, Vol. 12, No. 2-3, pp. 93-118. 

  32. Mulunda, C. K., Wagacha, P. W., and Muchemi, L., Review of Trends in Topic Modeling Techniques, Tools, Inference Algorithms and Applications, The 5th International Conference on Soft Computing and Machine Intelligence, 2018, pp. 28-37. 

  33. Newman, D., Lau, J. H., Grieser, K., and Baldwin, T., Automatic Evaluation of Topic Coherence, Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, 2010, June, pp. 100-108. 

  34. Park, I. C., Kim, S. H., and Yoon, B. U., Technology Clustering Using Textual Information of Reference Titles in Scientific Paper, Journal of Society of Korea Industrial and Systems Engineering, 2020, Vol. 43, No. 2, pp. 25-32. 

  35. Park, J. H. and Song, M., A Study on the Research Trends in Library & Information Science in Korea using Topic Modeling, Journal of the Korean Society for Information Management, 2013, Vol. 30, No. 1, pp. 7-32. 

  36. Park, J. H. and Oh, H. J., Comparison of Topic Modeling Methods for Analyzing Research Trends of Archives Management in Korea: Focused on LDA and HDP, Korean Library And Information Science Society, 2017, Vol. 48, No. 4, pp. 235-258. 

  37. Park, S. U. and Lee, B. R., Trend Analysis of Korean Cultural Policy Studies Using Text Mining, The Korean Governance Review, 2017, Vol. 24, No. 3, pp. 95-119. 

  38. Ramage, D., Rosen, E., Chuang, J., Manning, C. D., and McFarland, D. A., Topic Modeling for the Social Sciences, NIPS Workshop, 2009, pp. 1-4. 

  39. Rehurek, R. and Sojka, P., Software Framework for Topic Modelling with Large Corpora, The LREC Workshop on New Challenges for NLP Frameworks, 2010, pp. 45-50. 

  40. Seo, H. B. and Lee, H. Y., PSS Research Trend, Proceeding of Spring Conference in the Korea Society for Simulation, 2017, pp. 997-1017. 

  41. Siever, C. and Shirley, K. E., LDAvis: A Method for Visualizing and Interpreting Topics, Proceedings of the Workshop on Interactive Language Learning, Visualization, and Interfaces, 2014, pp. 63-70. 

  42. Teh, Y., Whye, J., Michaerl, B., Mattew. J., and Blei, D. M., Hierarchical Dirichlet Processes, Journal of the American Statistical Association, 2006, Vol. 101, pp. 1566-1581. 

  43. Vayansky, I. and Kumar, S. A. P., A Review of Topic Modeling Methods, Information Systems, 2020, Vol. 94, pp. 1-15. 

  44. Yoon, S. Y. and Yoon, D. K., A Trend Analysis on Disaster and Safety Management Using Topic Modeling, Journal of the Korean Society for Geospatial Information Science, 2017, Vol. 25, No. 3, pp. 75-85. 

  45. Zhao, W., Chen, J. J., Perkins, R., Liu, Z., Ge, W., Ding, Y., and Zou, W., A Heuristic Approach to Determine an Appropriate Number of Topics in Topic Modeling, BMC Bioinformatics, 2015, Vol. 16, No. S8, pp. 1-10. 

저자의 다른 논문 :

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로