최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기한국농공학회논문집 = Journal of the Korean Society of Agricultural Engineers, v.63 no.1, 2021년, pp.11 - 25
김지혜 (Department of Rural Systems Engineering, Seoul National University) , 전상민 (Department of Rural Systems Engineering, Seoul National University) , 황순호 (Research Institute of Agriculture and Life Sciences, Seoul National University) , 김학관 (Graduate School of International Agricultural Technology, Institutes of Green Bio Science and Technology, Seoul National University) , 허재민 (Department of Rural Systems Engineering, Seoul National University) , 강문성 (Department of Rural Systems Engineering, Research Institute of Agriculture and Life Sciences, Institutes of Green Bio Science and Technology, Seoul National University)
The objective of this study was to analyze the impact of activation functions on flood forecasting model based on Artificial neural networks (ANNs). The traditional activation functions, the sigmoid and tanh functions, were compared with the functions which have been recently recommended for deep ne...
Adamowski, J., and S. O. Prasher, 2012. Comparison of machine learning methods for runoff forecasting in mountainous watersheds with limited data. Journal of Water and Land Development 17(1): 89-97. doi:10.2478/v10025-012-0038-4.
Aggarwal, C. C., 2018. Neural networks and deep learning: Springer.
Chollet, F., 2015. Keras. https://keras.io. Accessed 20Jul. 2020.
Chollet, F., 2017. Deep Learning with Python: Manning.
Clevert, D. A., T. Unterthiner, and S. Hochreiter, 2016. Fast and accurate deep network learning by exponential linear units (ELUs). arXiv preprint. arXiv:1511.07289.
Dawson, C. W., and R. Wilby, 1998. An artificial neural network approach to rainfall-runoff modeling. Hydrological Sciences 43(1): 47-66. doi:10.1080/02626669809492102.
Donate, J. P., C. Paulo, G. S. German, and S. M. Araceli, 2013. Time series forecasting using a weighted crossvalidation evolutionary artificial neural network ensemble. Neurocompution 109: 27-32. doi:10.1016/j.neucom.2012.02.053.
Glorot, X., and Y. Bengio, 2010. Understanding the difficulty of training deep feedforward neural networks. In Proc. Thirteenth International Conference on Artificial Intelligence and Statistics: 249-256.
Goodfellow, I., Y. Bengio, and A. Courville, 2016. Deep Learning: MIT press.
Hsu, K. N., H. V. Gupta, and S. sorooshian, 1995. Artificial neural network modeling of the rainfall-runoff process. Water Resources Research 31(10): 2517-2530. doi:10.1029/95WR01955.
Hu, C., Q. Wu, H. Li, S. Jian, N. Li, and Z. Lou, 2018. Deep learning with a long short-term memory networks approach for rainfall-runoff simulation. Water 10(11): 1543. doi:10.3390/w10111543.
Jeung, M., S. Baek, J. Beom, K. H. Cho, Y. Her, and K. Yoon, 2019. Evaluation of random forest and regression tree methods for estimation of mass first flush ratio in urban catchments. Journal of Hydrology 575: 1099-1110. doi:10.1016/j.jhydrol.2019.05.079.
Kang, M. S., and S. W. Park, 2003, Short-term flood forecasting using artificial neural networks. Journal of The Korean Society of Agricultural Engineers 45(2): 45-57 (in Korean).
Kang, M. S., M. G. Kang, S. W. Park, J. J. Lee, and R. H. Yoo, 2006. Application of grey model and artificial neural networks to flood forecasting. Journal of the American Water Resources Association 42(2): 473-486.
Kim, J. H., 1993. A study on hydrologic forecasting of stream flows based on artificial neural network. Ph.D. diss., Incheon, Republic of Korea: Inha University (in Korean).
Kingma, D. P., and J. Ba, 2014. Adam: A method for stochastic optimization. arXiv preprint. arXiv:1412.6980.
Krizhevsky, A., I. Sutskever, and G. E. Hinton, 2017. Imagenet classification with deep convolutional neural networks. Communications of the ACM 60(6): 84-90. doi:10.1145/3065386.
Lee, G. S., S. C. Park, H. M. Lee, and Y. H. Jin, 2000. The prediction of runoff using artificial neural network in the Young-san River. Journal of Korea Water Resources Association 33(1): 251-256 (in Korean).
Marina, C., P. Andreussi, and A. Soldati, 1999. River flood forecasting with a neural network model. Water Resources Research 35(4): 1191-1197. doi:10.1029/1998WR900086.
Ministry of the Interior and Safety, 2018. Statistical yearbook of natural disaster (in Korean).
Moriasi, D. N., M. W. Gitau, N. Pai, and P. Daggupati, 2015. Hydrologic and water quality models: performance measures and evaluation criteria. Transactions of the ASABE 58(6): 1763-1785. doi:10.13031/trans.58.10715.
Sarkar, A., and R. Kumar, 2012. Artificial neural networks for event based rainfall-runoff modeling. Journal of Water Resource and Protection 4(10): 891. doi:10.4236/jwarp.2012.410105.
Solomatine, D., L. M. See, and R. J. Abrahart, 2009. Data-driven modelling: concepts, approaches and experiences. In Practical Hydroinformatics: 17-30.
Song, J. H., Y. Her, K. Suh, M. S. Kang, and H. Kim, 2019. Regionalization of a Rainfall-Runoff Model: Limitations and Potentials. Water 11(11): 2257. doi:10.3390/w11112257.
Xu, B., N. Wang, T. Chen, and M. Li, 2015. Empirical evaluation of rectified activations in convolutional network. arXiv preprint. arXiv:1505.00853.
Young, C. C., W. C. Liu, and M. C. Wu, 2017. A physically based and machine learning hybrid approach for accurate rainfall-runoff modeling during extreme typhoon events. Applied Soft Computing 53: 205-216. doi:10.1016/j.asoc.2016.12.052.
Zealnad, C. M., D. H. Burn, and S. P. Simonovic, 1999. Short term stream flow forecasting using artificial neural networks. Journal of Hydrology 214: 32-48. doi:10.1016/S0022-1694(98)00242-X.
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.