$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Surface Deformation Measurement of the 2020 Mw 6.4 Petrinja, Croatia Earthquake Using Sentinel-1 SAR Data 원문보기

대한원격탐사학회지 = Korean journal of remote sensing, v.37 no.1, 2021년, pp.139 - 151  

Achmad, Arief Rizqiyanto (Department of Smart Regional Innovation, Kangwon National University) ,  Lee, Chang-Wook (Department of Science Education, Kangwon National University)

Abstract AI-Helper 아이콘AI-Helper

By the end of December 2020, an earthquake with Mw about 6.4 hit Sisak-Moslavina County, Croatia. The town of Petrinja was the most affected region with major power outage and many buildings collapsed. The damage also affected neighbor countries such as Bosnia and Herzegovina and Slovenia. As a ligh...

주제어

표/그림 (8)

AI 본문요약
AI-Helper 아이콘 AI-Helper

대상 데이터

  • 4 occurred and hit central Croatia. The epicenter of the earthquake is located around 5 km southwest of the town of Petrinja. This earthquake devastated the town with a lot of building damaged, at least seven people dead, and many were wounded.

이론/모형

  • Two-pass InSAR approach is applied to SAR datasets. Those images are being co-registered at sub-pixel accuracy to form the interferometric pair.
본문요약 정보가 도움이 되었나요?

참고문헌 (35)

  1. Achmad, A.R., S. Lee, S. Park, J. Eom, and C.-W. Lee, 2020. Estimating the potential risk of the Mt. Baekdu Volcano using a synthetic interferogram and the LAHARZ inundation zone, Geosciences Journal, 24(6): 755-768, https://doi.org/10.1007/s12303-020-0032-9 

  2. Bruyninx, C., J. Legrand, A. Fabian, and E. Pottiaux, 2019. GNSS metadata and data validation in the EUREF Permanent Network, GPS Solutions, 23(4): 106, https://doi.org/10.1007/s10291-019-0880-9 

  3. Chen, C.W. and H. Zebker, 2002. Phase unwrapping for large SAR interferograms: Statistical segmentation and generalized network models, IEEE Transactions on Geoscience and Remote Sensing,40(8):1709-1719,https://doi.org/10.1109/TGRS.2002.802453 

  4. Croatian Geological Survey, 2021. Press release of the Croatian Geological Survey (HGI-CGS), Hrvatski geoloski institut, https://www.hgicgs.hr/press-release-of-the-croatian-geologicalsurvey-hgi-cgs/, Accessed on Jan. 25, 2021. 

  5. Crosetto, M., O. Monserrat, M. Cuevas-Gonzalez, N. Devanthery, and B. Crippa, 2016. Persistent Scatterer Interferometry: A review, ISPRS Journal of Photogrammetry and Remote Sensing, 115: 78-89, https://doi.org/10.1016/j.isprsjprs.2015.10.011 

  6. Dodangeh, E., M. Panahi, F. Rezaie, S. Lee, D. TienBui, C.-W. Lee, and B. Pradhan, 2020. Novel hybrid intelligence models for flood-susceptibility prediction: Meta optimization of the GMDH and SVR models with the genetic algorithm and harmony search, Journal of Hydrology, 590: 125423, https://doi.org/10.1016/j.jhydrol.2020.125423 

  7. Fadhillah, M.F., A.R. Achmad, and C.-W. Lee, 2020. Integration of InSAR Time-Series Data and GIS to Assess Land Subsidence along Subway Lines in the Seoul Metropolitan Area, South Korea, Remote Sensing, 12(21): 3505, https://doi.org/10.3390/rs12213505 

  8. Ferretti, A., C. Prati, and F. Rocca, 2001. Permanent scatterers in SAR interferometry, IEEE Transactions on Geoscience and Remote Sensing, 39(1): 8-20, https://doi.org/10.1109/36.898661 

  9. Ganas, A.,P. Elias, S. Valkaniotis, V. Tsironi, I. Karasante, and P. Briole, 2021. Petrinja earthquake moved crust 10 feet, https://doi.org/10.32858/temblor.156, Accessed on Feb. 8, 2021. 

  10. Geng, T., X. Xie, R. Fang, X. Su, Q. Zhao, G. Liu, H. Li, C. Shi, and J. Liu, 2016. Real-time capture of seismic waves using high-rate multi-GNSS observations: Application to the 2015 M w 7.8 Nepal earthquake, Geophysical Research Letters, 43(1): 161-167, https://doi.org/10.1002/2015GL067044 

  11. Hakim, W.L., A.R. Achmad, J. Eom, and C.-W. Lee, 2020.Land Subsidence Measurement of Jakarta Coastal Area Using Time Series Interferometry with Sentinel-1 SAR Data, Journal of Coastal Research, 102(sp1): 75-81, https://doi.org/10.2112/SI102-010.1 

  12. Hakim, W.L., A.R. Achmad, and C.-W. Lee, 2020. Land Subsidence Susceptibility Mapping in Jakarta Using Functional and Meta-Ensemble Machine Learning Algorithm Based on Time-Series InSAR Data, Remote Sensing, 12(21): 3627, https://doi.org/10.3390/rs12213627 

  13. Hooper, A.J., 2006. Persistent Scatterer Radar Interferometry for Crustal Deformation Studies and Modeling of Volcanic Deformation, Stanford University, Stanford, CA, USA. 

  14. Hooper,A.J., P. Segall, and H. Zebker, 2007. Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis, with application to Volcan Alcedo, Galapagos, Journal of Geophysical Research: Solid Earth, 112(7): B07407, https://doi.org/10.1029/2006JB004763 

  15. Hooper, A.J., 2008. A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches, Geophysical Research Letters, 35(16):L16302, https://doi.org/10.1029/2008GL034654 

  16. Hooper, A.J., 2010. A statistical-cost approach to unwrapping the phase of InSAR time series, http://radar.tudelft.nl/-ahooper/Hooper_FRINGE_2009.pdf, Accessed on Dec. 16, 2020. 

  17. Hooper, A.J., D. Bekaert, K. Spaans, and M. Arikan, 2012. Recent advances in SAR interferometry time series analysis for measuring crustal deformation, Tectonophysics, 514-517: 1-13, https://doi.org/10.1016/J.TECTO.2011.10.013 

  18. Hooper, A.J., H. Zebker, P. Segall, and B. Kampes, 2004. A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers, Geophysical Research Letters, 31(23):L23611, https://doi.org/10.1029/2004GL021737 

  19. Lee, C.-W., Z. Lu, and H.S. Jung, 2012. Simulation of time-series surface deformation to validate a multi-interferogram InSAR processing technique, International Journal of Remote Sensing, 33(22): 7075-7087, https://doi.org/10.1080/01431161.2012.700137 

  20. Marquardt, D.W., 1963. An Algorithm for Least Squares Estimation of Nonlinear Parameters, Journal of the Society for Industrial and Applied Mathematics, 11(2): 431-441, https://doi.org/10.1137/0111030 

  21. Ministry of Internal Affairs of Republic of Croatia, 2020. Earthquake near Petrinja, https://civilnazastita.gov.hr/vijesti/potres-kod-petrinje-3357/3357,Accessed on Jan. 25, 2021 (In Croatian). 

  22. Nur, A.S., A.R. Achmad, and C.-W. Lee, 2020. Land Subsidence Measurement in Reclaimed Coastal Land: Noksan UsingC-Band Sentinel-1 Radar Interferometry, Journal of Coastal Research, 102(sp1): 218-223, https://doi.org/10.2112/SI102-027.1 

  23. Okada, Y., 1985. Surface deformation due to shear and tensile faults in a half-space, Bulletin of the Seismological Society of America, 75(4): 1135-1154. 

  24. Osmanoglu, B., F. Sunar, S. Wdowinski, and E. Cabral-Cano, 2016. Time series analysis of InSAR data: Methods and trends, ISPRS Journal of Photogrammetry and Remote Sensing, 115: 90-102, https://doi.org/10.1016/j.isprsjprs.2015.10.003 

  25. Pawluszek-Filipiak, K. and A. Borkowski, 2020. Integration of DInSAR and SBAS Techniques to Determine Mining-Related Deformations Using Sentinel-1 Data: The Case Study of Rydultowy Mine in Poland, Remote Sensing, 12(2): 242, https://doi.org/10.3390/rs12020242 

  26. Pikija, M., 1987. Basic geological map of SFRY 1:100000, List Sisak L-33-93. Croatian Geological Survey (HGI-CGS), Belgrade, HRV (in Croatian). 

  27. Sousa, J.J., A.J. Hooper, R.F. Hanssen, L.C. Bastos, and A.M. Ruiz, 2011. Persistent Scatterer InSAR: A comparison of methodologies based on a model of temporal deformation vs. spatial correlation selection criteria, Remote Sensing of Environment, 115(10): 2652-2663, https://doi.org/10.1016/j.rse.2011.05.021 

  28. Storchak, D.A., D. Di Giacomo, E.R. Engdahl, J. Harris, I. Bondar, W.H.K. Lee, P. Bormann, and A. Villasenor, 2015.The ISC-GEM Global Instrumental Earthquake Catalogue (1900-2009): Introduction, Physics of the Earth and Planetary Interiors, 239: 48-63, https://doi.org/10.1016/j.pepi.2014.06.009 

  29. Tobita, M., 2016.Combined logarithmic and exponential function model for fitting postseismic GNSS time series after 2011 Tohoku-Oki earthquake, Earth, Planets and Space, 68(1): 41, https://doi.org/10.1186/s40623-016-0422-4 

  30. Ustaszewski, K., M. Herak, B. Tomljenovie, D. Herak, and S. Matej, 2014. Neotectonics of the Dinarides-Pannonian Basin transition and possible earthquake sources in the Banja Luka epicentral area, Journal of Geodynamics, 82: 52-68, https://doi.org/10.1016/j.jog.2014.04.006 

  31. Weston, J., A.M.G. Ferreira, and G.J. Funning, 2012. Systematic comparisons of earthquake source models determined using InSAR and seismic data, Tectonophysics, 532-535: 61-81, https://doi.org/10.1016/j.tecto.2012.02.001 

  32. Wilkinson, M.W., K.J.W. McCaffrey, R.R. Jones, G.P. Roberts, R.E. Holdsworth, L.C. Gregory, Walters, R.J. Wedmore, L., H. Goodall, and F. Iezzi, 2017. Near-field fault slip of the 2016 Vettore M w 6.6 earthquake (CentralItaly) measured using low-cost GNSS, Scientific Reports, 7(1): 1-7, https://doi.org/10.1038/s41598-017-04917-w 

  33. Wright, T.J., B.E. Parsons, J.A. Jackson, M. Haynes, E.J. Fielding, P.C. England, and P.J. Clarke, 1999. Source parameters of the 1 October 1995 Dinar (Turkey) earthquake from SAR interferometry and seismic bodywave modelling, Earth and Planetary Science Letters, 172(1-2): 23-37, https://doi.org/10.1016/S0012-821X(99)00186-7 

  34. Wright, T.J., Z. Lu, and C. Wicks, 2003. Source model for the Mw 6.7, 23 October 2002, Nenana Mountain Earthquake (Alaska) from InSAR, Geophysical Research Letters, 30(18): 1974, https://doi.org/10.1029/2003GL018014 

  35. Xu, X., D.T. Sandwell, and B. Smith-Konter, 2020. Coseismic displacements and surface fractures from sentinel-1 InSAR: 2019 Ridgecrest earthquakes, Seismological Research Letters, 91(4): 1979-1985, https://doi.org/10.1785/0220190275 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로