$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

염내성 세균에 의한 보리의 염 스트레스 내성 촉진
Enhancement of Salt Stress Tolerance of Hordeum vulgare. L by Salt-Tolerant Bacteria 원문보기

한국환경농학회지 = Korean journal of environmental agriculture, v.40 no.4, 2021년, pp.345 - 352  

이슬 (전북대학교 농화학과) ,  (전북대학교 농화학과) ,  (전북대학교 농화학과) ,  송형근 (전북대학교 농화학과) ,  조유성 (전북대학교 농화학과) ,  이지훈 (전북대학교 농화학과)

Abstract AI-Helper 아이콘AI-Helper

BACKGROUND: Salinity is one of the major limiting factors in agriculture that affect the growth and productivity of crops. It is economically difficult to artificially purify the soil affected by salt. Therefore, the use of plant growth-promoting bacteria (PGPB) in an effort to reduce stress caused ...

주제어

참고문헌 (29)

  1. Allakhverdiev SI, Sakamoto A, Nishiyama Y, Inaba M, Murata N (2000) Ionic and osmotic effects of NaCl-induced inactivation of photosystems I and II in Synechococcus sp. Plant Physiology, 123, 1047-1056. https://doi.org/10.1104/pp.123.3.1047. 

  2. Ilangumaran G, Smith DL (2017) Plant growth promoting rhizobacteria in amelioration of salinity stress: A systems biology perspective. Frontiers in Plant Science, 8. https://doi.org/10.3389/fpls.2017.01768. 

  3. Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651-681. https://doi.org/10.1146/annurev.arplant.59.032607.092911. 

  4. Grattan SR, Zeng L, Shannon MC, Roberts SR (2002) Rice is more sensitive to salinity than previously thought. California Agriculture, 56, 189-195. 

  5. Glick BR (2012) Plant growth-promoting bacteria: Mechanisms and applications. Scientifica, 2012, 963401. https://doi.org/10.6064/2012/963401. 

  6. Qin H, He L, Huang R (2019) The coordination of ethylene and other hormones in primary root development. Frontiers in Plant Science, 10. https://doi.org/10.3389/fpls.2019.00874. 

  7. Morgan PW, Drew MC (1997) Ethylene and plant responses to stress. Physiologia Plantarum, 100, 620-630. https://doi.org/10.1111/j.1399-3054.1997.tb03068.x. 

  8. Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiology and Biochemistry, 42, 565-572. https://doi.org/10.1016/j.plaphy.2004.05.009. 

  9. Saravanakumar D, Samiyappan R (2007) ACC deaminase from Pseudomonas fluorescens mediated saline resistance in groundnut (Arachis hypogea) plants. Journal of Applied Microbiology, 102, 1283-1292. https://doi.org/10.1111/j.1365-2672.2006.03179.x. 

  10. Ma W, Guinel FC, Glick BR (2003) Rhizobium leguminosarum Biovar viciae 1-aminocyclopropane1-carboxylate deaminase promotes nodulation of pea plants. Applied and Environmental Microbiology, 69, 4396-4402. https://doi.org/10.1128/AEM.69.8.4396-4402.2003. 

  11. Ma W, Charles TC, Glick BR (2004) Expression of an exogenous 1-aminocyclopropane-1-carboxylate deaminase gene in Sinorhizobium meliloti increases its ability to nodulate alfalfa. Applied and Environmental Microbiology, 70, 5891-5897. https://doi.org/10.1128/AEM.70.10.5891-5897.2004. 

  12. Bianco C, Defez R (2010) Improvement of phosphate solubilization and Medicago plant yield by an indole3-acetic acid-overproducing strain of Sinorhizobium meliloti. Applied and Environmental Microbiology, 76, 4626-4632. https://doi.org/10.1128/AEM.02756-09. 

  13. Bianco C, Defez R (2009) Medicago truncatula improves salt tolerance when nodulated by an indole3-acetic acid-overproducing Sinorhizobium meliloti strain. Journal of Experimental Botany, 60, 3097-3107. https://doi.org/10.1093/jxb/erp140. 

  14. Egamberdieva D, Kucharova Z (2009) Selection for root colonising bacteria stimulating wheat growth in saline soils. Biology and Fertility of Soils, 45, 563-571. https://doi.org/10.1007/s00374-009-0366-y. 

  15. Glick BR, Cheng Z, Czarny J, Duan J (2007) Promotion of plant growth by ACC deaminase-producing soil bacteria. European Journal of Plant Pathology, 119, 329-339. https://doi.org/10.1007/s10658-007-9162-4. 

  16. Zarei T, Moradi A, Kazemeini SA, Akhgar A, Rahi AA (2020) The role of ACC deaminase producing bacteria in improving sweet corn (Zea mays L. var saccharata) productivity under limited availability of irrigation water. Scientific Reports, 10, 20361. https://doi.org/10.1038/s41598-020-77305-6. 

  17. Sharma A, Johri BN, Sharma AK, Glick BR (2003) Plant growth-promoting bacterium Pseudomonas sp. strain GRP3 influences iron acquisition in mung bean (Vigna radiata L. Wilzeck). Soil Biology and Biochemistry, 35, 887-894. https://doi.org/10.1016/S0038-0717(03)00119-6. 

  18. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glockner FO (2012) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Research, 41, D590-D596. https://doi.org/10.1093/nar/gks1219. 

  19. Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar, Buchner A, Lai T, Steppi S et al. (2004) ARB: a software environment for sequence data. Nucleic Acids Research, 32, 1363-1371. https://doi.org/10.1093/nar/gkh293. 

  20. Rahman A, Sitepu IR, Tang S-Y, Hashidoko Y (2010) Salkowski's reagent test as a primary screening index for functionalities of rhizobacteria isolated from wild dipterocarp saplings growing naturally on medium-strongly acidic tropical peat soil. Bioscience, Biotechnology, and Biochemistry, 74, 2202-2208. https://doi.org/10.1271/bbb.100360. 

  21. Wellburn AR (1994) The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. Journal of Plant Physiology, 144, 307-313. https://doi.org/10.1016/S0176-1617(11)81192-2. 

  22. Lee S, Khanal A, Cho AH, Lee H, Kang M-S, Unno T, Hur H-G, Lee J-H (2019) Cupriavidus sp. strain Ni-2 resistant to high concentration of nickel and its genes responsible for the tolerance by genome comparison. Archives of Microbiology, 201, 1323-1331. https://doi.org/10.1007/s00203-019-01700-5. 

  23. Schoenborn L, Yates PS, Grinton BE, Hugenholtz P, Janssen PH (2004) Liquid serial dilution is inferior to solid media for isolation of cultures representative of the phylum-level diversity of soil bacteria. Applied and Environmental Microbiology, 70, 4363-4366. https://doi.org/10.1128/AEM.70.7.4363-4366.2004. 

  24. Arkhipova TN, Veselov SU, Melentiev AI, Martynenko EV, Kudoyarova GR (2005) Ability of bacterium Bacillus subtilis to produce cytokinins and to influence the growth and endogenous hormone content of lettuce plants. Plant and Soil, 272, 201-209. https://doi.org/10.1007/s11104-004-5047-x. 

  25. Idris EE, Iglesias DJ, Talon M, Borriss R (2007) Tryptophan-dependent production of indole-3-acetic acid (IAA) affects level of plant growth promotion by Bacillus amyloliquefaciens FZB42. Molecular Plant-Microbe Interactions, 20, 619-626. https://doi.org/10.1094/mpmi-20-6-0619. 

  26. Valencia-Cantero E, Hernandez-Calderon E, Velazquez-Becerra C, Lopez-Meza JE, Alfaro-Cuevas R, LopezBucio J (2007) Role of dissimilatory fermentative iron-reducing bacteria in Fe uptake by common bean (Phaseolus vulgaris L.) plants grown in alkaline soil. Plant and Soil, 291, 263-273. https://doi.org/10.1007/s11104-007-9191-y. 

  27. Gutierrez-Luna FM, Lopez-Bucio J, AltamiranoHernandez J, Valencia-Cantero E, de la Cruz HR, Macias-Rodriguez L (2010) Plant growth-promoting rhizobacteria modulate root-system architecture in Arabidopsis thaliana through volatile organic compound emission. Symbiosis, 51, 75-83. https://doi.org/10.1007/s13199-010-0066-2. 

  28. Lee E-S, Song H-G (2010) Plant growth promotion by purple nonsulfur Rhodopseudomonas faecalis strains. Korean Journal of Microbiology, 46, 157-161. 

  29. Raddadi N, Cherif A, Boudabous A, Daffonchio D (2008) Screening of plant growth promoting traits of Bacillus thuringiensis. Annals of Microbiology, 58, 47-52. https://doi.org/10.1007/BF03179444. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로