$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

과황산을 이용한 2,4-D의 산화: 하이드록실아민, 킬레이트제의 영향
Persulfate Oxidation of 2,4-D: Effect of Hydroxylamine and Chelating Agent 원문보기

지하수토양환경 = Journal of soil and groundwater environment, v.26 no.1, 2021년, pp.54 - 64  

최지연 (경북대학교 건설환경에너지공학부) ,  윤나경 (경북대학교 건설환경에너지공학부) ,  신원식 (경북대학교 건설환경에너지공학부)

Abstract AI-Helper 아이콘AI-Helper

The chemical warfare agents (CWAs) have been developed for offensive or defensive purposes and used as chemical weapons in war and terrorism. The CWAs are exposed to the natural environment, transported through the water system and then eventually contaminate soil and groundwater. Therefore, effecti...

주제어

표/그림 (7)

참고문헌 (56)

  1. Amasha, M., Baalbaki, A., and Ghauch, A., 2018, A comparative study of the common persulfate activation techniques for the complete degradation of an NSAID: The case of ketoprofen, Chem. Eng. J., 350, 395-410. 

  2. Anipsitakis, G.P. and Dionysiou, D.D., 2004, Radical generation by the interaction of trasition metals with common oxidants, Environ. Sci. Technol., 38(13), 3705-3712. 

  3. Bartelt-Hunt, S.L., Barlaz, M.A., Knappe, D.R., and Kjeldsen, P., 2006, Fate of chemical warfare agents and toxic industrial chemicals in landfills, Environ. Sci. Technol., 40(13), 4219-4225. 

  4. Bigley, A.N., Xu, C., Henderson, T.J., Harvey, S.P., and Raushel, F.M., 2013, Enzymatic neutralization of the chemical warfare agent VX: Envolution of phosphotriesterase for phosphorithiolate hydrolysis, J. Am. Chem. Soc., 135(28), 10426-10432. 

  5. Buxton, G.V., Greenstock, C.L., Helman, W.P., and Ross, A.B., 1988, Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals ( • OH/ • O - ) in aqueous solution, J. Phys. Chem., 17, 513-531. 

  6. Candel, I., Marcos, M.D., Martinez-MaAnez, R., Sancenon, F., Costero, A.M., Parra, M., Gil, S., Guillem, C., Perez-Pla, F., and Amoros, P., 2015, Hydrolysis of DCNP (a Tabun mimic) catalysed by mesoporous silica nanoparticles, Microporous Mesoporous Mater., 217, 30-38. 

  7. Chauhan, S., Chauhan, S., D'Cruz, R., Faruqi, S., Singh, K.K., Varma, S., Singh, M., and Karthik, V., 2008, Chemical warfare agents, Environ. Toxicol. Pharmcol., 26(2), 113-122. 

  8. Chen, F., Li, Y., Guo, L., and Zhang, J., 2009, Strategies comparison of eliminating the passivation of non-aromatic intermediates in degradation of Orange II by Fe 3+ /H 2 O 2 , J. Hazard. Mater., 169(1-3), 711-718. 

  9. Chen, H., Zhang, Z., Feng, M., Liu, W., Wang, W., Yang, Q., and Hu, Y., 2017, Degradation of 2,4-dichlorophenoxyacetic acid in water by persulfate activated with FeS (mackinawite), Chem. Eng. J., 313, 498-507. 

  10. Chen, P.K., Polatnick, M., and Leather, G., 1991, Comparative study on artemisinin, 2,4-D, and glyphosate, J. Agrlc. Food Chem., 39(5), 991-994. 

  11. De Luca, A., Dantas, R.F., and Esplugas, S., 2014, Assessment of iron chelates efficiency for photo-Fenton at neutral pH, Water Res., 61, 232-242. 

  12. Dong, H., He, Q., Zeng, G., Tang, L., Zhang, L., Xie, Y., Zeng, Y., and Zhao, F., 2017, Degradation of trichloroethene by nanoscale zero-valent iron (nZVI) and nZVI activated persulfate in the absence and presence of EDTA, Chem. Eng. J., 316, 410-418. 

  13. Dulova, N., Kattel, E., and Trapido, M., 2017, Degradation of naproxen by ferrous ion-activated hydrogen peroxide, persulfate and combined hydrogen peroxide/persulfate processes: The effect of citric acid addition, Chem. Eng. J., 318, 254-263. 

  14. Fan, J., Gu, L., Wu, D., and Liu, Z., 2018, Mackinawite (FeS) activation of persulfate for the degradation of p-chloroaniline: Surface reaction mechanism and sulfur-mediated cycling of iron species, Chem. Eng. J., 333, 657-664. 

  15. Giannakoudakis, D.A., Farahmand, N., Lomot, D., Sobczak, K., Bandosz, T.J., and Colmenares, J.C., 2020, Ultrasound-activated TiO 2 /GO-based bifunctional photoreactive adsorbents for detoxification of chemical warfare agent surrogate vapors, Chem. Eng. J., 395, 125099. 

  16. Gu, X.G., Lu, S.G., Li, L., Qiu, Z.F., Sui, Q., and Lin, K.F., 2011, Oxidation of 1,1,1-trichloroethane stimulated by thermally activated persulfate, Ind. Eng. Chem. Res., 50(19), 11029-11036. 

  17. Gutch, P.K., Mazumder, A., and Raviraju, G., 2016, Oxidative decontamination of chemical warfare agent VX and its simulant using N,N-dichlorovaleramide, RCS Adv., 6, 2295-2301. 

  18. Han, D., Wan, J., Ma, Y., Wang, Y., Huang, M., Chen, Y., Li, D., Guan, Z., and Li, Y., 2014, Enhanced decolorization of orange G in a Fe(II)-EDDS activated persulfate process by accelerating the regeneration of ferrous iron with hydroxylamine, Chem. Eng. J., 256, 316-323. 

  19. Hart, J., 2009, Backgroud to selected environmental and human health effects of chemical warfare agents, T.A. Kassim, D. Barcelo(ed.), Environmental Consequences of War and Aftermanth. The handbook of Environmental Chemistry, vol. 3U. Springer, pp. 1-19. 

  20. Huang, K.C., Zhao, Z.Q., Hoag, G.E., Dahmania, A., and Block, P.A., 2005, Degradation of volatile organic compounds with thermally activated persulfate oxidation, Chemosphere, 61(4), 551-560. 

  21. IARC (International Agency for Research on Cancer), 2015. World Health Organization, Press Release N° 236. IARC Monographs evaluate DDT, lindane, and 2,4-D, www.iarc.fr/en/media-centre/pr/2015/pdfs/pr236_E.pdf. 

  22. Ji, Y., Ferronato, C., Salvador, A., Yang, X., and Chovelon, J.- M., 2014, Degradation of ciprofloxacin and sulfamethoxazole by ferrous-activated persulfate: Implications for remediation of groundwater contaminated by antibiotics, Sci. Total Environ., 472, 800-808. 

  23. Jung, W.Y., 2004, A study on the verification and disposal of chemical weapons declaration by North Korea, Defense policy research report 04-09, Korea Research Institute for Strategy, pp.2-108. 

  24. Killian, P.F., Bruell, C.J., Liang, C., and Marley, M.C., 2007, Iron(II) activated persulfate oxidation of MGP contaminated soil, Soil Sediment Contam., 16(6), 523-537. 

  25. Kim, K., 2007, Weapons of Mass Destruction, Ministry of Defense, Seoul, Korea. 

  26. Kim, H.-S., Do, S.-H., Park, K.-M., Jo, Y.-H., and Kong, S.-H., 2012, Degradation of TCE by persulfate oxidation with various activation methods (heat, Fe 2+ , and UV) for ex-situ chemical oxidation processes, J. Soil Groundwater Env., 17(6), 43-51. 

  27. KRICT (Korea Research Institute of Chemical Technology), 2002, Research Planning Report on Confrontation to Chemical and Biological Terror, M102EA000001-02E010000100, Ministry of Science and ICT, Sejong, Korea. 

  28. Kwon, J., Jung, H., Jung, H., and Lee, J., 2020, Micro/nanostructured coating for cotton textiles that repel oil, water, and chemical warfare agents, Polymers, 12(8), 1826. 

  29. Lee, D.T., Zhao, J., Oldham, C.J., Peterson, G.W., and Parsons, G.N., 2017, UiO-66-NH 2 metal-organic framework (MOF) nucleation on TiO 2 , ZnO, and Al 2 O 3 atomic layer depositiontreated polymer fibers: role of metal oxide on MOF growth and catalytic hydrolysis of chemical warfare agent simulants, ACS Appl. Mater. Interfaces, 9(51), 44847-44855. 

  30. Li, K., Stefan, M.I., and Crittenden, J.C., 2004, UV photolysis of trichloroethylene: product study and kinetic modeling, Environ. Sci. Technol., 38(24), 6685-6693. 

  31. Liang, C., Huang, C.F., and Chen, Y.J., 2008, Potential for activated persulfate degradation of BTEX contamination, Water Res., 42(15), 4091-4100. 

  32. Liang, C. and Su, H.W., 2009, Identification of sulfate and hydroxyl radicals in thermally activated persulfate, Ind. Eng. Chem. Res., 48(11), 5558-5562. 

  33. Liu, G., Li, X., Han, B., Chen, L., Zhu, L., and Campos, L.C., 2017, Efficient degradation of sulfamethoxazole by the Fe(II)/HSO 5 - process enhanced by hydroxylamine: Efficiency and mechanism, J. Hazard. Mater., 322(Part B), 461-468. 

  34. Long, J.W., Chervin, C.N., Balow, R.B., Jeon, S., Miller, J.B., Helms, M.E., Owrutsky, J.C. Rolison, D.R., and Fears, K.P., 2020, Zirconia-based aerogels for sorption and degradation of dimethyl methylphosphonate, Ind. Eng. Chem. Res., 59(44), 19584-19592. 

  35. Meselson, M., 2017, From Charles and Francis Darwin to Richard Nixon: The origin and termination of anti-plant chemical warfare in Vietnam, B. Friedrich, D. Hoffmann, J. Renn, F. Schmaltz, M. Wolf(ed.), One Hundred Years of chemical Warfare: Research, Deployment, Consequences, Springer Nature, pp. 335-348. 

  36. Miao, Z., Gu, X., Lu, S., Brusseau, M.L., Zhang, X., Fu, X., Danish, M., Qiu, Z., and Sui, Q., 2015, Enhancement effects of chelating agents on the degradation of tetrachloroethene in Fe(III) catalyzed percarbonate system, Chem. Eng. J., 281, 286-294. 

  37. MOE (Ministry of Environment), 2019, Framework Act on Water Management, Sejong, Korea. 

  38. Monteagudo, J.M., Duran, A., Martin, I.S., and Carnicer, A., 2011, Role of different intermediate active species in the mineralization reactions of phenolic pollutants under a UV-A/C photo-Fenton process, Appl. Catal. B Environ., 106(1-2), 242-249. 

  39. Moon, S.-Y., Wagner, G.W., Mondloch, J.E., Peterson, G.W., DeCoste, J.B. Hupp, J.T., and Farha, O.K., 2015, Effective, facile, and selective hydrolysis of the chemical warfare agent VX using Zr 6 -based metal-organic frameworks, Inorg. Chem., 54(22), 10829-10833. 

  40. Nawata, J., Zozwik, P., and Popiel, S., 2019, Thermal and catalytic methods used for destruction of chemical warfare agents, Int. J. Environ. Sci. Techol., 16, 3899-3912. 

  41. Neta, P. and Huie, R.E., 1998, Rate constants for reactions of inorganic radicals in aqueous solution, J. Phys. Chem. Ref. Data, 17, 1027-1284. 

  42. Oh, S.-Y., Kim, H.-W., Park, J.-M., Park, H.-S., and Yoon, C., 2009, Oxidation of polyvinyl by persulfate activated with heat, Fe 2+ and zero-valent iron, J. Hazard. Mater., 168(1), 346-351. 

  43. Osovsky, R., Kaplan, D., Nir, I., Rotter, H., Elisha, S., and Columbus, I., 2014, Decontamination of adsorbed chemical warfare agents on activated carbon using hydrogen peroxide solutions, Environ. Sci. Technol., 48(18), 10912-10918. 

  44. Smolkin, B., Levi, N., Karton-Lifshin, N., Yehezkel, L., Zafrani, Y., and Columbus, I., 2018, Oxidative detoxificiation of sulfur-containing chemical warfare agents by electrophilic iodine, J. Org. Chem., 83(22), 13949-13955. 

  45. Ploskonka, A.M. and DeCoste, J.B., 2019, Insight into organophosphate chemical warfare agent simulant hydrolysis in metalorganic frameworks, J. Hazard. Mater., 375, 191-197. 

  46. Skarohlid, R., McGachy, L., Martinec, M., and Roskova, Z., 2020, Removal of PCE/TCE from groundwater by peroxydisulfate activated with citric acid chelated ferrous iron at 13℃, Environ. Technol. Innov., 19, 101004. 

  47. Sohn, H., Letant, S., Sailor, M.J., and Trogler, W.C., 2000, Detection fluorophosphonate chemical warfare agents by catalytic hydrolysis with a porous silicon interferometer, J. Am. Chem. Soc., 122(22), 5399-5400. 

  48. Wang, S., Pomerantz, N.L., Dai, Z., Xie, W., Anderson, E.E., Miller, T., Khan, S.A., and Parsons, G.N., 2020, Polymer of intrinsic microporosity (PIM) based fibrous mat: combining particle filtration and rapid catalytic hydrolysis of chemical warfare agent simulants into a highly sorptive, breathable, and mechanically robust fiber matrix, Mater. Today Adv., 8, 100085. 

  49. Venny, Gan, S., and Ng, H.K., 2012, Inorganic chelated modified-Fenton treatment of polycyclic aromatic hydrocarbon(PAH)-contaminated soils. Chem. Eng. J., 180, 1-8. 

  50. Wagner, G.W. and Yang, Y.C., 2002, Rapid nucleophilic/oxidative decontamination of chemical warfare agents, Ind. Eng. Chem. Res., 41(8), 1925-1928. 

  51. Wang, Z., Qiu, W., Pang, S., and Jiang, J., 2019, Effect of chelators on the production and nature of the reactive intermediates formed in Fe(II) activated peroxydisulfate and hydrogen peroxide processes, Water Res., 164, 114957. 

  52. Watts, R.J. and Teel, A.L., 2006, Treatment of contaminated soils and groudnwater using ISCO, Pract. Period. Hazard. Toxic Radioact. Waste Manag., 10(1), 2-9. 

  53. Wu, X., Gu, X., Lu, S., Qiu, Z., Sui, Q., Zang, X., Miao, Z., Xu, M., and Danish, M., 2016, Accelerated degradation of tetrachloroethylene by Fe(II) activated persulfate process with hydroxylamine for enhancing Fe(II) regeneration, J. Chem. Technol. Biotechnol., 91(5), 1280-1289. 

  54. Yang, S.Y., Wang, P., Yang, X., Shan, L., Zhang, W.Y., Shao, X.T., and Niu, R., 2010, Degradation efficiencies of azo dye Acid Orange 7 by the interaction of heat, UV and anions with common oxidants: persulfate, peroxymonosulfate and hydrogen peroxide, J. Hazard. Mater., 179(1-3), 552-558. 

  55. Zhao, L., Ji, Y., Kong, D., Lu, J., Zhou, Q., and Yin, X., 2016, Simultaneous removal of bisphenol A and phosphate in zerovalent iron activated persulfate oxidation process, Chem. Eng. J., 303, 458-466. 

  56. Zou, J., Ma, J., Chen, L., Li, X., Guan, Y., Xie, P., and Pan, C., 2013, Rapid acceleration of ferrous iron/peroxymonosulfate oxidation of organic pollutants by promoting Fe(III)/Fe(II) cycle with hydroxylamine, Environ. Sci. Technol., 47(20), 11685-11691. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로