$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Identification, Enzymatic Activity, and Decay Ability of Basidiomycetous Fungi Isolated from the Decayed Bark of Mongolian Oak (Quercus mongolica Fisch. ex Ledeb.) 원문보기

Journal of forest and environmental science, v.37 no.1, 2021년, pp.52 - 61  

Nguyen, Manh Ha (Tree Pathology and Mycology Laboratory, College of Forest and Environmental Sciences, Kangwon National University) ,  Kim, Dae Ho (Tree Pathology and Mycology Laboratory, College of Forest and Environmental Sciences, Kangwon National University) ,  Park, Ji Hyun (Department of Forest Insects and Diseases, National Institute of Forest Science) ,  Park, Young Ui (Green Space Corporation) ,  Lee, Moo Yeul (Green Space Corporation) ,  Choi, Myeong Hee (Green Space Corporation) ,  Lee, Dong Ho (Green Space Corporation) ,  Lee, Jong Kyu (Tree Pathology and Mycology Laboratory, College of Forest and Environmental Sciences, Kangwon National University)

Abstract AI-Helper 아이콘AI-Helper

Decay fungi can decompose plant debris to recycle carbon in the ecosystem. Still, they can also be fungal pathogens, which can damage living trees and/or wood material and cause a large amount of timber loss. We isolated and identified basidiomycetous fungi from the decayed bark of Mongolian oak wra...

주제어

표/그림 (8)

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • The clearing zone formed around the mycelium outer edge of fungal isolates showed their cellulase activity. The assessment of cellulase activity was divided into a rating scale with 4 levels as follows: no activity (-) if no clearing zone; weak activity (+) if 0<clearing zone≤ 2 mm; moderate activity (++) if 2 mm<clearing zone≤5 mm; strong activity (+++) if clearing zone≥5 mm.

대상 데이터

  • Decayed bark tissues and fruiting bodies were collected from the trunks of Mongolian oak (Q. mongolica), wrapped with sticky roll traps in 4 survey sites: Jong Myo and Chang Kyung palace in Seoul, and Cheong Gye and Gun Po in Gyeonggi province, Korea.
  • Two fungal isolates were selected for the experiment. In which, isolate BDF01 (Abortiporus biennis) had the fastest mycelial growth, while isolate BDF09 (Gymnopus lux- urians) was the most common bark decay fungus in our study.
  • Wood discs (5 cm thick, 10 cm diameter) were freshly cut from Mongolian oak trunks in Chuncheon campus of Kangwon National University. Wood discs with bark tissue were dried for 168 hours at 75℃ and measured dry weight.

데이터처리

  • The significant difference in loss of dry weight among treatments was tested by using one-way ANOVA followed by Tukey’s HSD test with a 5% probability level. All statistical analyses and graphs were conducted in IBM SPSS statistics version 24 for Windows.
본문요약 정보가 도움이 되었나요?

참고문헌 (34)

  1. Anastasi A, Tigini V, Varese GC. 2013. The Bioremediation Potential of Different Ecophysiological Groups of Fungi. In: Fungi as Bioremediators (Goltapeh EM, Danesh YR, Varma A, eds). Springer, Heidelberg, pp 29-49. 

  2. Bold G, Langer M, Bornert L, Speck T. 2020. The Protective Role of Bark and Bark Fibers of the Giant Sequoia (Sequoiadendron giganteum) during High-Energy Impacts. Int J Mol Sci 21: 3355. 

  3. Brischke C, Stricker S, Meyer-Veltrup L, Emmerich L. 2019. Changes in Sorption and Electrical Properties of Wood Caused by Fungal Decay. Holzforschung 73: 445-455. 

  4. Brischke C, Unger W. 2017. Protection of the Bio-Based Material. In: Performance of Bio-based Building Materials (Jones D, Brischke C, eds). Woodhead Publishing, Cambridge, pp 187-247. 

  5. Ding S, Hu H, Gu JD. 2020. Diversity, Abundance, and Distribution of Wood-Decay Fungi in Major Parks of Hong Kong. Forests 11: 1030. 

  6. Futai K. 2013. Pine Wood Nematode, Bursaphelenchus xylophilus. Annu Rev Phytopathol 51: 61-83. 

  7. Glaeser JA, Smith KT. 2010. Decay Fungi of Oaks and Associated Hardwoods for Western Arborists. Western Arborist 2010: 32-46. 

  8. Hong AR, Yun JH, Yi SH, Lee JH, Seo ST, Lee JK. 2018. Screening of Antifungal Microorganisms with Strong Biological Activity against Oak Wilt Fungus, Raffaelea quercus-mongolicae. J For Environ Sci 34: 395-404. 

  9. Hopkins AJM. 2007. The taxonomy and ecology of wood decay fungi in Eucalyptus obliqua trees and logs in the wet sclerophyll forests of southern Tasmania. PhD thesis. University of Tasmania, Tasmania, Australia. (in English) 

  10. Jang Y, Jang S, Lim YW, Kim C, Kim JJ. 2015. Perenniporia koreana, a New Wood-Rotting Basidiomycete from South Korea. Mycotaxon 130: 173-179. 

  11. Jung SJ, Kim NK, Lee DH, Hong SI, Lee JK. 2018. Screening and Evaluation of Streptomyces Species as a Potential Biocontrol Agent against a Wood Decay Fungus, Gloeophyllum trabeum. Mycobiology 46: 138-146. 

  12. Kim KH, Choi YJ, Seo ST, Shin HD. 2009. Raffaelea quercus-mongolicae sp. nov. Associated with Platypus koryoensis on oak in Korea. Mycotaxon 110: 189-197. 

  13. Kim NK, Kim DH, Han SK, Cha DS, Lee JK. 2018. Diversity and Distribution of Wood Decay Fungi in Korea. J For Environ Sci 34: 126-135. 

  14. Kim NK. 2014. Genetic diversity, wood decaying patterns and biological control of Trametes versicolor isolates. PhD thesis. Kangwon National University, Chuncheon, Korea. (in Korean) 

  15. Lee DH, Son SY, Seo ST, Lee JK. 2020. Investigation of the Mating-type Distribution of Raffaelea quercus-mongolicae in South Korea. For Pathol 50: e12590. 

  16. Lee JH, Hong AR, Yun JH, Seo ST, Lee JK. 2018. Prevention of Oak Wilt by Tree Injection of Culture Suspension of an Antifungal Microorganism, Streptomyces blastmyceticus against Oak Wilt Fungus, Raffaelea quercus-mongolicae. J For Environ Sci 34: 376-381. 

  17. Lee JK, Oh ES. 1998. Screening of White Rot Fungi with Selective Delignification Capacity for Biopulping. Korean J Mycol 26: 144-152. 

  18. Lee JK. 2020. Brief Description of Wood Decay and the Common Decay Fungi on Shade Trees in Urban Areas. 32pp. Tree Diagnostic Center, Kangwon National University, Chuncheon, Korea. 

  19. Lindgren BS, Raffa KF. 2013. Evolution of Tree Killing in Bark Beetles (Coleoptera: Curculionidae): Trade-offs between the Maddening Crowds and a Sticky Situation. Can Entomol 145: 471-495. 

  20. Mallerman J, Itria R, Babay P, Saparrat M, Levin L. 2019. Biodegradation of Nonylphenol Polyethoxylates by Litter-basidiomycetous Fungi. J Environ Chem Eng 7: 103316. 

  21. Marcot BG. 2017. A review of the role of fungi in wood decay of forest ecosystems. Res. Note. PNW-RN-575, Portland, OR, USDA For. Ser. Pacific, pp31. 

  22. Nguyen MH, Yong JH, Sung HJ, Lee JK. 2020. Screening of Endophytic Fungal Isolates against Raffaelea quercus-mongolicae Causing Oak Wilt Disease in Korea. Mycobiology 48: 484-494. 

  23. Oguro M, Imahiro S, Saito S, Nakashizuka T. 2015. Mortality Due to Japanese Oak Wilt Disease and Surrounding Forest Compositions. Data Brief 5: 208-212. 

  24. Pournou A. 2020. Wood Deterioration by Aquatic Microorganisms. In: Biodeterioration of Wooden Cultural Heritage: Organisms and Decay Mechanisms in Aquatic and Terrestrial Ecosystems (Pournou A, ed). Springer, Cham, pp 177-260. 

  25. Saitta A, Bernicchia A, Gorjon SP, Altobelli E, Granito VM, Losi C, Lunghini D, Maggi O, Medardi G, Padovan F, Pecoraro L, Vizzini A, Persiani AM. 2011. Biodiversity of Wood-Decay Fungi in Italy. Plant Biosyst 145: 958-968. 

  26. Schmidt O. 2006. Wood and Tree Fungi: Biology, Damage, Protection, and Use. Springer, Berlin. 

  27. Schweingruber FH, Steiger P, Borner A. 2019. Bark Anatomy of Trees and Shrubs in the Temperate Northern Hemisphere. Springer International Publishing, Cham. 

  28. Srivastava S, Kumar R, Singh VP. 2013. Wood Decaying Fungi. LAP Lambert Academic Publishing, Saarbrucken. 

  29. Thompson TA. 2004. A study of basidiomycetes isolated from coarse woody debris and contiguous soil horizons in a mixed deciduous-conifer forest in New Hampshire, United States of America. PhD thesis. University of New Hampshire, Durham, USA. (in English) 

  30. Tittiger C, Blomquist GJ. 2016. Pine Bark Beetles. Academic Press, London. 

  31. Vega FE, Hofstetter RW. 2015. Bark Beetles: Biology and Ecology of Native and Invasive Species. Academic Press, London. 

  32. Wang J, Cao X, Liu H. 2020. A Review of the Long-term Effects of Humidity on the Mechanical Properties of Wood and Wood-based Products. Eur J Wood Prod doi: 10.1007/s00107-020-01623-9. [Epub ahead of print] 

  33. Yi SH, Lee JH, Seo ST, Lee JK. 2017. In vivo Pathogenicity Test of Oak Wilt Fungus (Raffaelea quercus-mongolicae) on Oriental Chestnut Oak (Quercus acutissima). J For Environ Sci 33: 342-347. 

  34. Zabel RA, Morrell JJ. 2020. Factors Affecting the Growth and Survival of Fungi in Wood (fungal ecology). In: Wood Microbiology: Decay and Its Prevention (Zabel RA, Morrell JJ, eds). 2nd ed. Academic Press, San Diego, pp 99-128. 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로