$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

WRF 모형에서 한반도 여름철 강수 예측에 모의영역이 미치는 영향
Effect of Model Domain on Summer Precipitation Predictions over the Korean Peninsula in WRF Model 원문보기

대기 = Atmosphere, v.31 no.1, 2021년, pp.17 - 28  

김형규 (공주대학교 대기과학과) ,  이혜영 (공주대학교 대기과학과) ,  김주완 (공주대학교 대기과학과) ,  이승우 (기상청 수치모델링센터 수치자료응용과) ,  부경온 (국립기상과학원 현업운영개발부) ,  이송이 (공주대학교 대기과학과)

Abstract AI-Helper 아이콘AI-Helper

We investigated the impact of domain size on the simulated summer precipitation over the Korean Peninsula using the Weather Research and Forecasting (WRF) model. Two different domains are integrated up to 72-hours from 29 June 2017 to 28 July 2017 when the Changma front is active. The domain sizes a...

주제어

표/그림 (11)

참고문헌 (36)

  1. Aligo, E. A., W. A. Gallus Jr., and M. Segal, 2009: On the impact of WRF model vertical grid resolution on Midwest summer rainfall forecasts. Wea. Forecasting, 24, 575-594. 

  2. An, S.-I., K.-J. Ha, K.-H. Seo, S.-W. Yeh, S.-K. Min, and C.-H. Ho, 2011: A review of recent climate trends and causes over the Korean Peninsula. J. Climate Change Res., 2, 237-251 (in Korean with English abstract). 

  3. Choi, H.-J., and S.-Y. Hong, 2015: An updated subgrid orographic parameterization for global atmospheric forecast models. J. Geophys. Res. Atmos., 120, 12445-12457, doi:10.1002/2015JD024230. 

  4. Chu, Q., Z. Xu, Y. Chen, and D. Han, 2018: Evaluation of the ability of the Weather Research and Forecasting model to reproduce a sub-daily extreme rainfall event in Beijing, China using different domain configurations and spin-up times. Hydrol. Earth Syst. Sci., 22, 3391-3407, doi:10.5194/hess-22-3391-2018. 

  5. Dash, S. K., K. C. Pattnayak, S. K. Panda, D. Vaddi, and A. Mamgain, 2015: Impact of domain size on the simulation of Indian summer monsoon in RegCM4 using mixed convection scheme and driven by HadGEM2. Climate Dyn., 44, 961-975, doi:10.1007/s00382-014-2420-1. 

  6. Fasullo, J., and P. J. Webster, 2003: A hydrological definition of Indian monsoon onset and withdrawal. J. Climate, 16, 3200-3211. 

  7. Gebhardt, C., S. E. Theis, M. Paulat, and Z. B. Bouallegue, 2011: Uncertainties in COSMO-DE precipitation forecasts introduced by model perturbations and variation of lateral boundaries. Atmos. Res., 100, 168-177, doi:10.1016/j.atmosres.2010.12.008. 

  8. Goswami, P., and G. N. Mohapatra, 2014: A comparative evaluation of impact of domain size and parameterization scheme on simulation of tropical cyclones in the Bay of Bengal. J. Geophys. Res. Atmos., 119, 10-22, doi:10.1002/2013JD020592. 

  9. Goswami, P., H. Shivappa, and S. Goud, 2012: Comparative analysis of the role of domain size, horizontal resolution and initial conditions in the simulation of tropical heavy rainfall events. Meteor. Appl., 19, 170-178, doi:10.1002/met.253. 

  10. Han, J.-Y., S.-Y. Hong, K.-S. S. Lim, and J. Han, 2016: Sensitivity of a cumulus parameterization scheme to precipitation production representation and its impact on a heavy rain event over Korea. Mon. Wea. Rev., 144, 2125-2135, doi:10.1175/MWR-D-15-0255.1. 

  11. Hong, S.-Y., 2004: Comparison of heavy rainfall mechanisms in Korea and the central US. J. Meteorol. Soc. Jpn. Ser. II, 82, 1469-1479. 

  12. Hong, S.-Y., and J.-W. Lee, 2009: Assessment of the WRF model in reproducing a flash-flood heavy rainfall event over Korea. Atmos. Res., 93, 818-831. 

  13. Hong, S.-Y., and J. Jang, 2018: Impacts of shallow convection processes on a simulated boreal summer climatology in a global atmospheric model. Asia-Pac. J. Atmos. Sci., 54, 361-370, doi:10.1007/s13143-018-0013-3. 

  14. Hong, S.-Y., J. Dudhia, and S.-H. Chen, 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103-120. 

  15. Hong, S.-Y., J. Choi, E.-C. Chang, H. Park, and Y.-J. Kim, 2008: Lower-tropospheric enhancement of gravity wave drag in a global spectral atmospheric forecast model. Wea. Forecasting, 23, 523-531. 

  16. Hong, S.-Y., W. T. Kwon, I. U. Chung, H. J. Baek, Y. H. Byun, and D. H. Cha, 2011: A review of regional climate change in East-Asia and the Korean peninsula based on global and regional climate modeling researches. J. Climate Change Res., 2, 269-281 (in Korean with English abstract). 

  17. Hong, S.-Y., and Coauthors, 2018: The Korean Integrated Model (KIM) system for global weather forecasting. Asia-Pac. J. Atmos., 54, 267-292, doi:10.1007/s13143-018-0028-9. 

  18. Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long­lived greenhouse gases: Calculations with the AER radiative transfer mod els. J. Geophys. Res. Atmos., 113, D13103. 

  19. Jeong, J.-H., D.-I. Lee, and C.-C. Wang, 2016: Impact of the cold pool on mesoscale convective system-produced extreme rainfall over southeastern South Korea: 7 July 2009. Mon. Wea. Rev., 144, 3985-4006, doi:10.1175/MWR-D-16-0131.1. 

  20. Kamae, Y., W. Mei, and S.-P. Xie, 2019: Ocean warming pattern effects on future changes in East Asian atmospheric rivers. Environ. Res. Lett., 14, 054019, doi:10.1088/1748-9326/ab128a. 

  21. Kim, Y.-J., and A. Arakawa, 1995: Improvement of orographic gravity wave parameterization using a mesoscale gravity wave model. J. Atmos. Sci., 52, 1875-1902. 

  22. Kim, E.-H., K.-D. Ahn, H.-C. Lee, J.-C. Ha, and E. Lim, 2015: A study on the effect of ground-based GPS data assimilation into very-short-range prediction model. Atmosphere, 25, 623-637, doi:10.14191/Atmos.2015.25.4.623. 

  23. Kwon, Y. C., and S.-Y. Hong, 2017: A mass-flux cumulus parameterization scheme across gray-zone resolutions. Mon. Wea. Rev., 145, 583-598, doi:10.1175/MWR-D-16-0034.1. 

  24. Lee, T.-Y., and Y.-H. Kim, 2007: Heavy precipitation systems over the Korean peninsula and their classification. J. Korean Meteor. Soc., 43, 367-396. 

  25. Lee, J.-Y., W. Kim, and T.-Y. Lee, 2017: Physical and dynamic factors that drove the heavy rainfall event over the middle Korean Peninsula on 26-27 July 2011. Asia-Pac. J. Atmos. Sci., 53, 101-120, doi:10.1007/s13143-017-0009-4. 

  26. Li, Y., G. Lu, Z. Wu, H. He, J. Shi, Y. Ma, and S. Weng, 2016: Evaluation of optimized WRF precipitation forecast over a complex topography region during flood season. Atmosphere, 7, 145, doi:10.3390/atmos7110145. 

  27. Min, J.-S., J.-W. Roh, J.-B. Jee, and S. Kim, 2016: A study on sensitivity of heavy precipitation to domain size with a regional numerical weather prediction model. Atmosphere, 26, 85-95, doi:10.14191/Atmos.2016.26.1.085 (in Korean with English abstract). 

  28. Peralta, C., Z. Ben Bouallegue, S. E. Theis, C. Gebhardt, and M. Buchhold, 2012: Accounting for initial condition uncertainties in COSMO­DE­EPS. J. Geophys. Res. Atmos., 117, D07108, doi:10.1029/2011JD016581. 

  29. Shi, Y., Z. Jiang, Z. Liu, and L. Li, 2020: A Lagrangian analysis of water vapor sources and pathways for precipitation in East China in different stages of the East Asian summer monsoon. J. Climate, 33, 977-992, doi:10.1175/JCLI-D-19-0089.1. 

  30. Shin, H. H., and S.-Y. Hong, 2015: Representation of the subgrid-scale turbulent transport in convective boundary layers at gray-zone resolutions. Mon. Wea. Rev., 143, 250-271, doi:10.1175/MWR-D-14-00116.1. 

  31. Skamarock, W. C., and Coauthors, 2019: A Description of the Advanced Research WRF Model Version 4. NCAR Tech. Note NCAR/TN-556+STR, 145 pp, doi:10.5065/1dfh-6p97. 

  32. Sohn, B. J., G.-H. Ryu, H.-J. Song, and M.-L. Ou, 2013: Characteristic features of warm-type rain producing heavy rainfall over the Korean Peninsula inferred from TRMM measurements. Mon. Wea. Rev., 141, 3873-3888, doi:10.1175/MWR-D-13-00075.1. 

  33. Song, H.-J., and B.-J. Sohn, 2015: Two heavy rainfall types over the Korean peninsula in the humid East Asian summer environment: A satellite observation study. Mon. Wea. Rev., 143, 363-382, doi:10.1175/MWR-D-14-00184.1. 

  34. Tewari, M., and Coauthors, 2004: Implementation and verification of the unified NOAH land surface model in the WRF model. Extended Abstract, 20th conference on weather analysis and forecasting/16th conference on numerical weather prediction, 14, 11-15 [Available online at https://ams.confex.com/ams/84Annual/techprogram/paper_69061.htm]. 

  35. Wang, X., P. Steinle, A. Seed, and Y. Xiao, 2016: The sensitivity of heavy precipitation to horizontal resolution, domain size, and rain rate assimilation: case studies with a convection-permitting model. Adv. Meteorol., 2016, 7943845, doi:10.1155/2016/7943845. 

  36. Yeo, S.-R., M. H. Kwon, and J.-Y. Lee, 2020: The non-linear relationship between the western North Pacific anticyclonic circulation and Korean summer precipitation on subseasonal timescales. Climate Dyn., 54, 525-541, doi:10.1007/s00382-019-05013-7. 

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로