$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

다양한 백색 LED 광과 원적색광 보광에 의한 이고들빼기의 생산성 향상
Enhancement of Crepidiastrum denticulatum Production Using Supplemental Far-red Radiation under Various White LED Lights 원문보기

생물환경조절학회지 = Journal of bio-environment control, v.30 no.2, 2021년, pp.149 - 156  

박송이 (충북대학교 축산.원예.식품공학부 원예학전공) ,  오명민 (충북대학교 축산.원예.식품공학부 원예학전공)

초록
AI-Helper 아이콘AI-Helper

인공광 이용형 식물공장에서 인공광원의 전력 소모는 작물 생산 비용을 증가시키는 주요한 요인이다. 따라서 인공광원의 광 이용효율을 향상시키는 것은 식물공장의 경제성 확보에 중요한 사안이다. 본 연구의 목적은 다양한 스펙트럼을 갖는 백색 LED와 원적색광을 추가한 다양한 백색 LED에서 재배된 이고들빼기의 생산성과 광 이용효율을 비교하는 것이다. 파종 후 3주된 이고들빼기 묘는 심지 이용 수경재배 시스템에 정식되었고, 기온 20 ± 0.1℃, 상대습도 60 ± 0.1%, 이산화탄소 938.2 ± 5.8μmol·mol-1, 광도 PPFD 250.6 ± 0.6μmol·m-2·s-1, 광주기 16시간으로 설정된 인공광 이용형 식물공장에서 5주 재배되었다. 광질 처리조건은 대조구로 식물재배용 3가지 백색 LED(CL 1, CL 2, CL 3), 백색 LED 그룹[Warm W(WW), Neutral W(NW), Neutral W + Red(NWR), Cool W(CW)], 원적색광이 추가된 백색 LED 그룹(WWFR, NWFR, NWRFR, CWFR)이 사용되었다. 백색 LED에 원적색광의 추가는 지상부 생육특성 항목(생체중, 엽장, 엽면적)을 증대시켰고 WWFR의 지상부 생장이 유의적으로 가장 높았다. 반면에 원적색광의 보광엽록소 함량을 감소시켰고 플라보노이드 지수에는 영향을 주지 않았다. 재배기간 동안의 총 소비전력은 CL 1에서 가장 낮았고 WWFR의 총 소비전력이 가장 높았다. WW와 WWFR의 광 이용효율이 높았으며 백색 LED에 원적색광의 추가는 광 이용효율을 3-15% 증대시켰다. 따라서, 백색 LED에 원적색광의 보광은 작물의 생산성과 광 이용효율을 향상시켜 작물의 생산비용을 감소시킬 수 있었다.

Abstract AI-Helper 아이콘AI-Helper

The electric energy consumption of artificial lighting sources is a major factor to increase the production cost in plant factories with artificial lighting (PFALs). Therefore, improving the light use efficiency of lighting sources is an important task in securing the economic feasibility of PFALs. ...

주제어

참고문헌 (39)

  1. Ahmad Nazarudin M.R. 2012, Plant growth retardants effect on growth and flowering of potted Hibiscus rosa-sinensis L. J Trop Plant Physiol 4:29-40. 

  2. Bae J.H., S.Y. Park, and M.M. Oh 2017, Supplemental irradiation with far-red light-emitting diodes improves growth and phenolic contents in Crepidiastrum denticulatum in a plant factory with artificial lighting. Hortic Environ Biotechnol 58:357-366. doi:10.1007/s13580-017-0331-x 

  3. Bae J.H., S.Y. Park, and M.M. Oh 2019, Growth and phenolic compounds of Crepidiastrum denticulatum under various blue light intensities with a fixed phytochrome photostationary state using far-red light. Hortic Environ Biotechnol 60:199-206. doi:10.1007/s13580-018-0112-1 

  4. Cope K.R., and B. Bugbee 2013, Spectral effects of three types of white light-emitting diodes on plant growth and development: absolute versus relative amounts of blue light. HortScience 48:504-509. doi:10.21273/HORTSCI.48.4.504 

  5. Dannehl D., T. Schwend, D. Veit, and U. Schmidt 2021, Increase of yield, lycopene, and lutein content in tomatoes grown under continuous PAR spectrum LED lighting. Front Plant Sci 12:299. doi:10.3389/fpls.2021.611236 

  6. Hernandez R., and C. Kubota 2016, Physiological responses of cucumber seedlings under different blue and red photon flux ratios using LEDs. Environ Exp Bot 121:66-74. doi:10.1016/j.envexpbot.2015.04.001 

  7. Keuskamp D.H., R. Sasidharan, I. Vos, A.J. Peeters, L.A. Voesenek, and R. Pierik 2011, Blue-light-mediated shade avoidance requires combined auxin and brassinosteroid action in Arabidopsis seedlings. Plant J 67:208-217. doi:10.1111/j.1365-313X.2011.04597.x 

  8. Kim M., G.H. Yoo, A. Randy, H.S. Kim, and C.W. Nho 2017, Chicoric acid attenuate a nonalcoholic steatohepatitis by inhibiting key regulators of lipid metabolism, fibrosis, oxidation, and inflammation in mice with methionine and choline deficiency. Mol Nutr Food Res 61:1600632. doi:10.1002/mnfr.201600632 

  9. Kim T.H., Y. Lee, S.H. Han, and S.J. Hwang 2013, The effects of wavelength and wavelength mixing ratios on microalgae growth and nitrogen, phosphorus removal using Scenedesmus sp. for wastewater treatment. Bioresour Technol 130:75-80. doi:10.1016/j.biortech.2012.11.134 

  10. Kim Y.J., T.K.L. Nguyen, and M.M. Oh 2020, Growth and ginsenosides content of ginseng sprouts according to LED-based light quality changes. Agronomy 10:1979. doi:10.3390/agronomy10121979 

  11. Kozai T., and G. Niu 2020, Plant factory: role of the plant factory with artificial lighting (PFAL) in urban areas. In T Kozai, G Niu, M Takagaki, eds, Academic Press, UK, pp 7-33. 

  12. Lee G.J., J.W. Heo, C.R. Jung, H.H. Kim, J.S. Jo, J.G. Lee, G.J. Lee, S.Y. Nam, and E.Y. Hong 2016a, Effects of artificial light sources on growth and glucosinolate contents of hydroponically grown kale in plant factory. Protected Hortic Plant Fac 25:77-82. (in Korean) doi:10.12791/KSBEC.2016.25.2.77 

  13. Lee H.J., K.H. Cha, C.Y. Kim, C.W. Nho, and C.H. Pan 2014, Bioavailability of hydroxycinnamic acids from Crepidiastrum denticulatum using simulated digestion and Caco-2 intestinal cells. J Agric Food Chem 62:5290-5295. doi:10.1021/jf500319h 

  14. Lee J.W., K.H. Son, J.H. Lee, Y.J. Kim, and M.M. Oh 2019, Growth and biochemical responses of ice plant irradiated by various visible light spectra in plant factories. Hortic Sci Technol 37:598-608. doi:10.7235/HORT.20190060 

  15. Lee M.J., K.H. Son, and M.M. Oh 2016b, Increase in biomass and bioactive compounds in lettuce under various ratios of red to far-red LED light supplemented with blue LED light. Hortic Environ Biotechnol 57:139-147. doi:10.1007/s13580-016-0133-6 

  16. Lucas M.D., J.M. Daviere, M. Rodriguez-Falcon, M. Pontin, J.M. Iglesias-Pedraz, S. Lorrain, C. Fankhauser, M.A. Blazquez, E. Titarenko, and S. Prat 2008, A molecular framework for light and gibberellin control of cell elongation. Nature 451:480-484. doi:10.1038/nature06520 

  17. Mickens M.A., M. Torralba, S.A. Robinson, L.E. Spencer, M.W. Romeyn, G.D. Massa, and R.M. Wheeler 2019, Growth of red pak choi under red and blue, supplemented white, and artificial sunlight provided by LEDs. Sci Hortic 245:200-209. doi:10.1016/j.scienta.2018.10.023 

  18. Mitchell C.A., and F. Sheibani 2020, Plant factory: LED advancements for plant-factory artificial lighting. In T Kozai, G Niu, M Takagaki, eds, Academic Press, UK, pp 167-184. 

  19. Nguyen T.K.L., and M.M. Oh 2021, Physiological and biochemical responses of green and red perilla to LED-based light. J Sci Food Agric 101:240-252. doi:10.1002/jsfa.10636 

  20. Park S.M., E.K. Cho, J.H. An, B.H. Yoon, K.Y. Choi, and E.Y. Choi 2019, Plant growth and ascorbic acid content of Spinacia oleracea grown under different light-emitting diodes and ultraviolet radiation light of plant factory system. Protected Hortic Plant Fac 28:1-8. (in Korean) doi:10.12791/KSBEC.2019.28.1.1 

  21. Park S.Y., J.H. Bae, and M.M. Oh 2020a, Manipulating light quality to promote shoot growth and bioactive compound biosynthesis of Crepidiastrum denticulatum (Houtt.) Pak & Kawano cultivated in plant factories. J Appl Res Med Aromat Plants 16:100237. doi:10.1016/j.jarmap.2019.100237 

  22. Park S.Y, J.H. Bae, and M.M. Oh 2020b, Determination of adequate substrate water content for mass production of a high value-added medicinal plant, Crepidiastrum denticulatum (Houtt.) Pak & Kawano. Agronomy 10:388. doi:10.3390/agronomy10030388 

  23. Park S.Y., S.B. Oh, S.M. Kim, Y.Y. Cho, and M.M. Oh 2016, Evaluating the effects of a newly developed nutrient solution on growth, antioxidants, and chicoric acid contents in Crepidiastrum denticulatum. Hortic Environ Biotechnol 57:478-486. doi:10.1007/s13580-016-1060-2 

  24. Park Y.J., and E.S. Runkle 2018, Spectral effects of light-emitting diodes on plant growth, visual color quality, and photosynthetic photon efficacy: white versus blue plus red radiation. PLoS One 13:e0202386. doi:10.1371/journal.pone.0202386 

  25. Pattison P.M., J.Y. Tsao, G.C. Brainard, and B. Bugbee 2018, LEDs for photons, physiology and food. Nature 563:493-500. doi:10.1038/s41586-018-0706-x 

  26. Phansurin W., T. Jamaree, and S. Sakhonwase 2017, Comparison of growth, development, and photosynthesis of petunia grown under white or red-blue LED lights. Hortic Sci Technol 35:689-699. doi:10.12972/kjhst.20170073 

  27. Pysek P., T.M. Blackburn, E. Garcia-Berthou, I. Perglova, and W. Rabitsch 2017, Impact of biological invasions on ecosystem services: displacement and local extinction of native and endemic species. In M Vila, PE Hulme,eds, Springer, Switzerland, pp 157-175. 

  28. Raza A., A. Razzaq, S.S. Mehmood, X. Zou, X. Zhang, Y. Lv, and J. Xu 2019, Impact of climate change on crops adaptation and strategies to tackle its outcome: a review. Plants 8:34. doi:10.3390/plants8020034 

  29. Runkle E.S., and R.D. Heins 2001, Specific functions of red, far red, and blue light in flowering and stem extension of long-day plants. J Am Soc Hort Sci 126:275-282. doi:10.21273/JASHS.126.3.275 

  30. Sager J.C., W.O. Smith, J.L. Edwards, and K.L. Cyr 1988, Photosynthetic efficiency and phytochrome photoequilibria determination using spectral data. Trans ASAE 31:1882-1889. doi:10.13031/2013.30952 

  31. Shimizu H. 2016, LED Lighting for Urban Agriculture: effect of light quality on secondary metabolite production in leafy greens and seedlings. In T Kozai, K Fujiwara, ES Runkle, Springer, Singapore, pp 239-260. 

  32. Siipola S.M., T. Kotilainen, N. Sipari, L.O. Morales, A.V. Lindfors, T.M. Robson, and P.J. Aphalo 2015, Epidermal UV-A absorbance and whole-leaf flavonoid composition in pea respond more to solar blue light than to solar UV radiation. Plant Cell Environ 38:941-952. doi:10.1111/pce.12403 

  33. Son K.H., and M.M. Oh 2013, Leaf shape, growth, and antioxidant phenolic compounds of two lettuce cultivars grown under various combinations of blue and red light-emitting diodes. Hortscience 48:988-995. doi:10.21273/HORTSCI.48.8.988 

  34. Son K.H., J.H. Lee, Y.J. Oh, D.I. Kim, M.M. Oh, and B.C. In 2017, Growth and bioactive compound synthesis in cultivated lettuce subject to light-quality changes. HortScience 52:584-591. doi:10.21273/HORTSCI11592-16 

  35. Son K.H., M.J. Song, and M.M. Oh 2016, Comparison of combined light-emitting diodes and fluorescent lamps for growth and light use efficiency of red leaf lettuce. Protected Hortic Plant Fac 25:139-145. (in Korean) doi:10.12791/KSBEC.2016.25.3.139 

  36. Song J.I., K. Cao, Y. Hao, S. Song, W. Su, and H. Liu 2019, Hypocotyl elongation is regulated by supplemental blue and red light in cucumber seedling. Gene 707:117-125. doi:10.1016/j.gene.2019.04.070 

  37. Terashima I., T. Fujita, T. Inoue, W.S. Chow, and R. Oguchi 2009, Green light drives leaf photosynthesis more efficiently than red light in strong white light: revisiting the enigmatic question of why leaves are green. Plant Cell Physiol 50:684-697. doi:10.1093/pcp/pcp034 

  38. Wittkopp T.M., S. Schmollinger, S. Saroussi, W. Hu, W. Zhang, Q. Fan, S.D. Gallaher, M.T. Leonard, E. Soubeyrand, and G.J. Basset 2017, Bilin-dependent photoacclimation in Chlamydomonas reinhardtii. Plant Cell 29:2711-2726. doi: 10.1105/tpc.17.00149 

  39. Yan Z., D. He, G. Niu, Q. Zhou, and Y. Qu 2020, Growth, nutritional quality, and energy use efficiency in two lettuce cultivars as influenced by white plus red versus red plus blue LEDs. Int J Agric Biol Eng 13:33-40. doi:10.25165/j.ijabe.20201302.5135 

저자의 다른 논문 :

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로