$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

복합막 기반의 미생물 연료전지 연구에 대한 총설
Recent Advance in Microbial Fuel Cell based on Composite Membranes 원문보기

멤브레인 = Membrane Journal, v.31 no.2, 2021년, pp.120 - 132  

김세민 (연세대학교 언더우드학부 생명과학공학과) ,  라즈쿠마 파텔 (연세대학교 융합과학공학부 에너지환경융합과) ,  김종학 (연세대학교 화공생명공학과)

초록
AI-Helper 아이콘AI-Helper

미생물 연료전지(MFC)는 미생물의 촉매 반응을 이용하여 폐수 등 환경 오염물질을 처리함과 동시에 전기에너지를 생성하는 생물전기화학 장치다. 미생물 연료전지의 주요 성분 중 하나인 양이온 교환막(PEM)은 미생물 연료 전지의 성능에 결정적인 영향을 미치며, 현재 가장 많이 사용되고 있는 양성자교환막은 Nafion이다. Nafion은 우수한 성능을 가지고 있지만, 단가가 높고, 생물오염에 취약하며, 생분해가 불가능하다는 단점이 있다. 따라서 Nafion을 대체하기 위한 새로운 복합막을 개발하고자 하는 시도가 꾸준히 이루어졌다. 본 총설에서는 미생물 연료전지 분야에서 최근 개발된 복합막의 특징과 성능을 고찰하며, 특히 양성자교환막을 중점적으로 다룬다.

Abstract AI-Helper 아이콘AI-Helper

Microbial fuel cell (MFC) is a bio-electrochemical device that generates electricity by utilizing bacterial catalytic activity that degrades wastewater. Proton exchange membrane (PEM) is the core component of MFC that decides its performance, and Nafion membrane is the most widely used PEM. In spite...

주제어

참고문헌 (43)

  1. T. Cai, L. Meng, G. Chen, Y. Xi, N. Jiang, J. Song, S. Zheng, Y. Liu, G. Zhen, and M. Huang, "Application of advanced anodes in microbial fuel cells for power generation: A review", Chemosphere, 248, 125985 (2020). 

  2. A. ElMekawy, H. M. Hegab, D. Losic, C. P. Saint, and D. Pant, "Applications of graphene in microbial fuel cells: The gap between promise and reality", Renew. Sustain. Energy Rev., 72, 1389 (2017). 

  3. P. Bakonyi, L. Kook, G. Kumar, G. Toth, T. Rozsenberszki, D. D. Nguyen, S. W. Chang, G. Zhen, K. Belafi-Bako, and N. Nemestothy, "Architectural engineering of bioelectrochemical systems from the perspective of polymeric membrane separators: A comprehensive update on recent progress and future prospects", J. Membr. Sci., 564, 508 (2018). 

  4. M. T. Noori, M. M. Ghangrekar, C. K. Mukherjee, and B. Min, "Biofouling effects on the performance of microbial fuel cells and recent advances in biotechnological and chemical strategies for mitigation", Biotechnol. Adv., 37, 107420 (2019). 

  5. L. Kook, P. Bakonyi, F. Harnisch, J. Kretzschmar, K. J. Chae, G. Zhen, G. Kumar, T. Rozsenberszki, G. Toth, N. Nemestothy, and K. Belafi-Bako, "Biofouling of membranes in microbial electrochemical technologies: Causes, characterization methods and mitigation strategies", Bioresour. Technol., 279, 327 (2019). 

  6. P. Chatterjee, M. M. Ghangrekar, and D. Leech, "A brief review on recent advances in air-cathode microbial fuel cells", Environ. Eng. Manage. J., 17, 1531 (2018). 

  7. M. Shabani, H. Younesi, M. Pontie, A. Rahimpour, M. Rahimnejad, and A. A. Zinatizadeh, "A critical review on recent proton exchange membranes applied in microbial fuel cells for renewable energy recovery", J. Clean. Prod., 264, 121446 (2020). 

  8. P. Bakonyi, L. Kook, T. Rozsenberszki, G. Toth, K. Belafi-Bako, and N. Nemestothy, "Development and application of supported ionic liquid membranes in microbial fuel cell technology: A concise overview", Membr., 10, 16 (2020). 

  9. A. A. Yaqoob, M. N. M. Ibrahim, and S. Rodriguez-Couto, "Development and modification of materials to build cost-effective anodes for microbial fuel cells (MFCs): An overview", Biochem. Eng. J., 164, 107779 (2020). 

  10. S. Sung, B. Lee, O. Choi, and T. Kim, "Development of anion exchange membrane based on cross-linked poly(2,6-dimethyl-1,4-phenylene oxide) for alkaline fuel cell application", Membr J., 29, 173 (2019). 

  11. H. Kang and C. Park, "Effect of Nafion Ⓡ chain length on proton transport as a binder material", Membr. J., 30, 57 (2020). 

  12. M. Mouhib, A. Antonucci, M. Reggente, A. Amirjani, A. J. Gillen, and A. A. Boghossian, "Enhancing bioelectricity generation in microbial fuel cells and biophotovoltaics using nanomaterials", Nano. Res., 12, 2184 (2019). 

  13. J. Kim, S. Ryu, and S. Moon, "The fabrication of ion exchange membrane and its application to energy systems", Membr. J., 30, 79 (2020). 

  14. H. Chen, O. Simoska, K. Lim, M. Grattieri, M. Yuan, F. Dong, Y. S. Lee, K. Beaver, S. Weliwatte, E. M. Gaffney, and S. D. Minteer, "Fundamentals, applications, and future directions of bioelectrocatalysis", Chem. Rev., 120, 12903 (2020). 

  15. L. P. Fan and S. Xue, "Overview on electricigens for microbial fuel cell", Open Biotechnol. J., 10, 398 (2016). 

  16. P. Choudhury, U. S. P. Uday, N. Mahata, O. Nath Tiwari, R. N. Ray, T. K. Bandyopadhyay, and B. Bhunia, "Performance improvement of microbial fuel cells for waste water treatment along with value addition: A review on past achievements and recent perspectives", Renew. Sustain. Energy Rev., 79, 372 (2017). 

  17. P. Mukherjee and P. Saravanan, "Perspective view on materialistic, mechanistic and operating challenges of microbial fuel cell on commercialisation and their way ahead", ChemistrySelect., 4, 1601 (2019). 

  18. K. Lee, J. Han, C. Ryu, and G. Hwang, "Preparation of an anion exchange membrane using the blending polymer of poly(ether sulfone) (PES) and poly(phenylene sulfide sulfone) (PPSS)", Membr. J., 29, 155 (2019). 

  19. I. Gajda, J. Greenman, and I. A. Ieropoulos, "Recent advancements in real-world microbial fuel cell applications", Curr. Opin. Electrochem., 11, 78 (2018). 

  20. A. A. Yaqoob, M. N. M. Ibrahim, M. Rafatullah, Y. S. Chua, A. Ahmad, and K. Umar, "Recent advances in anodes for microbial fuel cells: An overview", Mater., 13, 2078 (2020). 

  21. H. Ko, M. Kim, S. Nam, and K. Kim, "Research of cross-linked hydrocarbon based polymer electrolyte membranes for polymer electrolyte membrane fuel cell applications", Membr. J., 30, 395 (2020). 

  22. P. Chatterjee, P. Dessi, M. Kokko, A. M. Lakaniemi, and P. Lens, "Selective enrichment of biocatalysts for bioelectrochemical systems: A critical review", Renew. Sustain. Energy Rev., 109, 10 (2019). 

  23. L. Kook, N. Nemestothy, K. Belafi-Bako, and P. Bakonyi, "Treatment of dark fermentative H 2 production effluents by microbial fuel cells: A tutorial review on promising operational strategies and practices", Int. J. Hydrogen. Energy, 46, 5556 (2021). 

  24. M. Azhar, J. Jaafar, M. Aziz, Y. Umar, M. A. J. Mazumder, and M. K. Nazal, "Mild sulfonated polyether ketone ether ketone ketone incorporated polysulfone membranes for microbial fuel cell application", J. Appl. Polym. Sci., e50216 (2020). 

  25. M. J. Gonzalez-Pabon, F. Figueredo, D. C. Martinez-Casillas, and E. Corton, "Characterization of a new composite membrane for point of need paper-based micro-scale microbial fuel cell analytical devices", PLoS ONE, 14, e0222538 (2019). 

  26. A. G. Kumar, S. Saha, H. Komber, B. R. Tiwari, M. M. Ghangrekar, B. Voit, and S. Banerjee, "Trifluoromethyl and benzyl ether side groups containing novel sulfonated co-poly(ether imide)s: Application in microbial fuel cell", Eur. Polym. J., 118, 451 (2019). 

  27. A. G. Kumar, A. Singh, H. Komber, B. Voit, B. R. Tiwari, M. T. Noori, M. M. Ghangrekar, and S. Banerjee, "Novel sulfonated co-poly(ether imide)s containing trifluoromethyl, fluorenyl and hydroxyl groups for enhanced proton exchange membrane properties: Application in microbial fuel cell", ACS Appl. Mater. Interfaces, 10, 14803 (2018). 

  28. A. A. O. Sirajudeen, M. S. M. Annuar, K. A. Ishak, H. Yusuf, and R. Subramaniam, "Innovative application of biopolymer composite as proton exchange membrane in microbial fuel cell utilizing real wastewater for electricity generation", J. Clean. Prod., 278, 123449 (2021). 

  29. S. Ayyaru, and Y.-H. Ahn, "Enhanced performance of sulfonated GO in SPEEK proton-exchange membrane for microbial fuel-cell application", J. Environ. Eng., 147, 04020153 (2021). 

  30. K. Ben Liew, J. X. Leong, W. R. W. Daud, A. Ahmad, J. J. Hwang, and W. Wu, "Incorporation of silver graphene oxide and graphene oxide nanoparticles in sulfonated polyether ether ketone membrane for power generation in microbial fuel cell", J. Power Sources, 449, 227490 (2020). 

  31. X. Chen, Y. Li, X. Yuan, N. Li, W. He, and J. Liu, "Synergistic effect between poly(diallyldimethylammonium chloride) and reduced graphene oxide for high electrochemically active biofilm in microbial fuel cell", Electrochim Acta, 359, 136949 (2020). 

  32. S. Khilari, S. Pandit, M. M. Ghangrekar, D. Pradhan, and D. Das, "Graphene oxide-impregnated PVA-STA composite polymer electrolyte membrane separator for power generation in a single-chambered microbial fuel cell", Ind. Eng. Chem. Res., 52, 11597 (2013). 

  33. Y. Li, C. Cheng, S. Bai, L. Jing, Z. Zhao, and L. Liu, "The performance of Pd-rGO electro-deposited PVDF/carbon fiber cloth composite membrane in MBR/MFC coupled system", Chem. Eng. J., 365, 317 (2019). 

  34. M. Shabani, H. Younesi, A. Rahimpour, and M. Rahimnejad, "Upgrading the electrochemical performance of graphene oxide-blended sulfonated polyetheretherketone composite polymer electrolyte membrane for microbial fuel cell application", Biocatal. Agric. Biotechnol., 22, 101369 (2019). 

  35. C. Li, L. Wang, X. Wang, C. Li, Q. Xu, and G. Li, "Fabrication of a SGO/PVDF-g-PSSA composite proton-exchange membrane and its enhanced performance in microbial fuel cells", J. Chem. Technol. Biotechnol., 94, 398 (2019). 

  36. Q. Xu, L. Wang, C. Li, X. Wang, C. Li, and Y. Geng, "Study on improvement of the proton conductivity and anti-fouling of proton exchange membrane by doping SGO@SiO 2 in microbial fuel cell applications", Int. J. Hydrogen. Energy, 44, 15322 (2019). 

  37. H. Yusuf, M. S. M. Annuar, S. M. D. S. Mohamed, and R. Subramaniam, "Medium-chain-length poly3-hydroxyalkanoates-carbon nanotubes composite as proton exchange membrane in microbial fuel cell", Chem. Eng. Commun., 206, 731 (2019). 

  38. P. Kumar and R. P. Bharti, "Nanocomposite polymer electrolyte membrane for high performance microbial fuel cell: Synthesis, characterization and application", J. Electrochem. Soc., 166, F1190 (2019). 

  39. C. Li, Y. Song, X. Wang, and Q. Zhang, "Synthesis, characterization and application of S-TiO 2 /PVDF-g-PSSA composite membrane for improved performance in MFCs", Fuel, 264, 116847 (2020). 

  40. N. Garino, A. Lamberti, S. Stassi, M. Castellino, M. Fontana, I. Roppolo, A. Sacco, C. F. Pirri, and A. Chiappone, "Multifunctional flexible membranes based on reduced graphene oxide/tin dioxide nanocomposite and cellulose fibers", Electrochim. Acta, 306, 420 (2019). 

  41. H. Nagar and V. Aniya, "Microporous material induced composite membrane with reduced oxygen leakage for MFC application", J. Environ. Chem. Eng., 8, 104117 (2020). 

  42. G. Sowmya, S. Gowrishankar, and M. R. Prabhu, "Influence of phosphotungstic acid in sulfonated poly(ether ether ketone)/poly(amide imide) based proton conductive membranes and its impact on the electrochemical studies of microbial fuel cell application", Ionics, 26, 1841 (2020). 

  43. C.-E. Zhao, J. Chen, Y. Ding, V. B. Wang, B. Bao, S. Kjelleberg, B. Cao, S. C. J. Loo, L. Wang, W. Huang, and Q. Zhang, "Chemically functionalized conjugated oligoelectrolyte nanoparticles for enhancement of current generation in microbial fuel cells", ACS Appl. Mater. Interfaces, 7, 14501 (2015). 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로