$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

한 초등 경력교사의 과학수업에서 나타나는 과학 교수지향과 PCK 요소들 사이의 관련성 탐색 -물체의 운동과 빛과 렌즈 단원을 중심으로-
A Study on Science Teaching Orientation and PCK Components as They Appeared in Science Lessons by an Experienced Elementary Teacher: Focusing on 'Motion of Objects' and 'Light and Lens' 원문보기

한국과학교육학회지 = Journal of the Korean association for science education, v.41 no.2, 2021년, pp.155 - 169  

신채연 (서울대학교) ,  송진웅 (서울대학교)

초록
AI-Helper 아이콘AI-Helper

이 연구는 초등 과학교과 전담을 맡고 있는 한 경력 교사의 과학교수지향(sceience teaching orientation)의 특징과 과학 교수지향이 다른 PCK 요소들과 어떤 관련이 맺고 있는지를 탐색한 사례연구이다. 이를 위해 Magnusson, Krajcik, & Borko(1999)의 PCK 모델을 적용하였으며, 특히 과학 교수지향과 관련하여 Friedrichsen, Driel, & Abell(2011)의 정의를 이용하였다. 과학수업에 전문성이 있다고 인정받는 한 명의 초등교사를 연구 참여자로 선정하고 그의 과학수업 21차시를 관찰하였다(물체의 운동 단원 10차시, 빛과 렌즈 단원 11차시). 교사 면담과 참여 교사의 PCK를 명시적으로 파악할 수 있는 CoRe(content representation) 응답지를 수집하여 함께 분석하였다. 먼저 사전 면담 자료를 통해 참여 교사의 과학 교수지향을 귀납적으로 분석하였다. Friedrichsen, Driel, & Abell(2011)이 제안한 과학 교수지향의 세 측면(과학 교수의 목적과 목표에 관한 신념, 과학의 본성에 관한 신념, 과학 교수학습에 관한 신념)을 가장 잘 표현할 수 있는 어구를 찾고, 이를 상위 범주로 분류하여 이에 이름을 붙이는 범주화 작업을 하였다. 과학 교수지향을 제외한 다른 PCK 요소들의 특징은 CoRe 응답지와 수업 관찰 자료를 Magnusson, Krajcik, & Borko 1999)의 PCK 모델에 따라 연역적으로 분석하였다. 연구 결과, 과학교수지향의 세 측면과 관련하여 그는 각각 '과학과 일상생활과의 관계와 과학 개념의 습득', '앎에 이르는 방법으로서의 과학', '학생 중심수업' 신념을 가지고 있었다. 이러한 세 측면은 다중적이고 복합적으로 얽혀 있었으나 '과학 탐구'라는 하나의 과학 교수지향으로 수렴됨을 확인할 수 있었다. 또한 교사가 다른 PCK 요소의 선정과 조직에 관련하여 의사결정을 내릴 때 더 주요하게 영향을 미치는 신념이 있음을 관찰할 수 있었다. 과학수업 전문성을 가지고 있다고 인정받는 초등교사의 과학 교수지향의 특징, 과학 교수지향과 다른 PCK 요소들과의 관련성을 탐색한 이 연구의 결과는 초등교사의 과학수업 실천을 이해하는데 있어 과학 교수지향의 역할과 의미에 시사점을 줄 수 있을 것이다.

Abstract AI-Helper 아이콘AI-Helper

This study aims at exploring the features of science teaching orientation (STO) and its relationships with other PCK (pedagogical content knowledge) components. To do this, based on the definition of STO by Friedrichsen, Driel, & Abell(2011) and PCK model by Magnusson, Krajcik, & Borko(1999), we obs...

주제어

표/그림 (5)

참고문헌 (48)

  1. Abell, S. K. (2007). Research on science teacher knowledge. In S.K. Abell & N.G. Lederman (Eds.), Handbook of research on science education, (pp. 1105-1149). Mahwah, NJ: Lawrence Erlbaum. 

  2. Abell, S. K. (2008). Twenty years later: Does pedagogical content knowledge remain a useful idea? International Journal of Science Education, 30(10), 1405-1416. 

  3. Appleton, K., & Kindt, I. (1999). How Do Beginning Elementary Teachers Cope with Science: Development of Pedagogical Content Knowledge in Science. 

  4. Aydin, S., Friedrichsen, P. M., Boz, Y., & Hanuscin, D. L. (2014). Examination of the topic-specific nature of pedagogical content knowledge in teaching electrochemical cells and nuclear reactions. Chemistry Education Research and Practice, 15(4), 658-674. 

  5. Bell, B., & Cowie, B. (2002). A case study of formative assessment. Formative assessment and science education, (pp. 25-61). Dordrecht: Kluwer Academic Publishers. 

  6. Campbell, T., Melville, W., & Goodwin, D. (2017). Science teacher orientations and PCK across science topics in grade 9 earth science. International Journal of Science Education, 39(10), 1263-1281. 

  7. Cochran, K. F., DeRuiter, J. A., & King, R. A. (1993). Pedagogical content knowing: An integrative model for teacher preparation. Journal of Teacher Education, 44(4), 263-272. 

  8. Demirdogen, B. (2016). Interaction between science teaching orientation and pedagogical content knowledge components. Journal of Science Teacher Education, 27(5), 495-532. 

  9. Friedrichsen, P., Driel, J. H. V., & Abell, S. K. (2011). Taking a closer look at science teaching orientations. Science Education, 95(2), 358-376. 

  10. Friedrichsen, P. J. (2002). A substantive-level theory of highly regarded secondary biology teachers' science teaching orientations. Doctoral Dissertation, Pennsylvania State University, USA. 

  11. Friedrichsen, P. M., & Dana, T. M. (2005). Substantive-level theory of highly regarded secondary biology teachers' science teaching orientations. Journal of Research in Science Teaching, 42(2), 218-244. 

  12. Garritz, A. (2013). PCK for dummies. Educacion Quimica, 24(EXTRAORD. 2), 462-465. doi:10.1016/S0187-893X(13)72512-6 

  13. Gess-Newsome, J., & Carlson, J. (2013). The PCK summit consensus model and definition of pedagogical content knowledge. Paper presented at the Reports from the Pedagogical Content Knowledge (PCK) Summit, ESERA Conference. 

  14. Glaser, B. G., Strauss, A. L., & Strutzel, E. (1968). The discovery of grounded theory; strategies for qualitative research. Nursing research, 17(4), 364. 

  15. Griffiths, A. K. & Barry, M. (1993). High School Students' Views about the Nature of Science. School Science and Mathematics, 93(1), 35-37. 

  16. Grossman, P. L. (1990). The making of a teacher: Teacher knowledge and teacher education. New York: Teachers College Press, Columbia University. 

  17. Henze, I., Van Driel, J. H., & Verloop, N. (2008). Development of experienced science teachers' pedagogical content knowledge of models of the solar system and the universe. International Journal of Science Education, 30(10), 1321-1342. 

  18. Hume, A., & Berry, A. (2010). Constructing CoRes-a strategy for building PCK in pre-service science teacher education. Research in Science Education, 41(3), 341-355. 

  19. Jung, H. N, & Jhun, Y. S. (2014). Analysis on the Degree of Difficulty in Teaching and Learning the 'Speed of Objects' Chapter. Journal of Korean Elementary Science Education, 33(1), 172-180. 

  20. Jung, S. J., & Shin, Y. J. (2020). Analysis of the difficulties experienced by elementary school teachers due to the combination of online and offline classes in COVID-19. The Journal of Education, 40(3), 93-112. 

  21. Kaya, O. N. (2009). The nature of relationships among the components of pedagogical content knowledge of preservice science teachers: 'Ozone layer depletion' as an example. International Journal of Science Education, 31(7), 961-988. 

  22. Kim, H. R., & Choi, S. Y. (2020). Survey on Teachers' Perception and Operational State for Elementary Science Online Remote Classes. Journal of Korean Elementary Science Education, 39(4), 522-532. 

  23. Kim, Y. H., & Yoo, J. H. (2019). Exploring Elementary Teachers' Difficulties on Teaching Science by Analyzing Questions in an Autonomous Online Teacher Community: Focusing on Physics Questions in Indischool. Journal of the Korean Association for Research in Science Education, 39(1), 73-88. 

  24. Kind, V. (2009). Pedagogical content knowledge in science education: perspectives and potential for progress. Studies in Science Education, 45(2), 169-204. 

  25. Kwak, Y. S. (2008). Research on Characteristics of Teacher Professionalism by the Type of Science Pedagogical Content Knowledge. Journal of The Korean Association For Science Education, 28(6), 592-602. 

  26. Lederman, N. G. (1992). Students' and teachers' conceptions of the nature of science: A review of the research. Journal of Research in Science Teaching, 29(4), 331-359. 

  27. Lederman, N. G. & O'Malley, M. (1990). Students' perceptions of tentativeness in science: Development, use, and sources of change. Science Education, 74(2), 225-239. 

  28. Lincoln, Y. S., & Guba, E. G. (1990). Judging the quality of case study reports. Internation Journal of Qualitative Studies in Education, 3(1), 53-59. 

  29. Loughran, J., Milroy, P., Berry, A., Gunstone, R., & Mulhall, P. (2001). Documenting science teachers' pedagogical content knowledge through PaP-eRs. Research in Science Education, 31(2), 289-307. 

  30. Maeng, S. H., & Kim, C. J. (2009). Student-Centeredness of the Modality of Science Teaching Based on Discourse Language Code. Journal of the Korean Association for Science Education, 29(1), 116-136. 

  31. Magnusson, S., Krajcik, J., & Borko, H. (1999). Nature, sources, and development of pedagogical content knowledge for science teaching. Examining pedagogical content knowledge: The construct and its implications for science education, (pp. 95-132). Dordrecht: Kluwer Academic Publishers. 

  32. Mavhunga, E., & Rollnic, M. (2011). The development and validation of a tool for measuring topic specific PCK in chemical equilibrium. In Proc. ESERA Conf. 

  33. McMillan, J. H., & Schumacher, S. (2001). Research in education: A conceptual introduction (5th ed.). New York: Longman. 

  34. Nespor, J. (1987). The role of beliefs in the practice of teaching. Journal of Curriculum Studies, 19(4), 317-328. 

  35. Pajares, M. F. (1992). Teachers' beliefs and educational research: Cleaning up a messy construct. Review of Educational Research, 62(3), 307-332. 

  36. Park, S., & Oliver, J. S. (2008). Revisiting the conceptualisation of pedagogical content knowledge (PCK): PCK as a conceptual tool to understand teachers as professionals. Research in Science Education, 38(3), 261-284. 

  37. Park, S., Suh, J., & Seo, K. (2018). Development and validation of measures of secondary science teachers' PCK for teaching photosynthesis. Research in Science Edcuation, 48(3), 549-573. 

  38. Patton, M. Q. (2015). Qualitative research & evaluation methods : integrating theory and practice (4th ed. ed.). Thousand Oaks, California: SAGE Publications, Inc. 

  39. Putnam, R. T., & Borko, H. (1997). Teacher learning: Implications of new views of cognition. Dordrecht: Springer. 

  40. Roehrig, G. H., & Luft, J. A. (2004). Constraints experienced by beginning secondary science teachers in implementing scientific inquiry lessons. International Journal of Science Education, 26(1), 3-24. 

  41. Rokeach, M. (1968). Beliefs, attitudes and values: A theory of organization and change. SanFrancisco: Jossey-Bass. 

  42. Shin. J. Y. (2015). A Student's Understanding and Difficulties on the Concept of Speed and Unit of Speed in the Elementary School. Masters Dissertation, Choungju National University of Education, Chung-buk, Korea. 

  43. Shulman, L. (1986). Those who understand: Knowledge growth in teaching. Educational researcher, 15(2), 4-14. 

  44. Shulman, L. (1987). Knowledge and teaching: Foundations of the new reform. Harvard Educational Review, 57(1), 1-23. 

  45. Smith III, J. P., & Girod, M. (2003). John Dewey & psychologizing the subject-matter: big ideas, ambitious teaching, and teacher education. Teaching and Teacher Education, 19(3), 295-307. 

  46. Tamir, P. (1988). Subject matter and related pedagogical knowledge in teacher edcuation. Teaching and Teacher Education, 4(2), 99-110. 

  47. Van Driel, J. H., Verloop, N., & De Vos, W. (1998). Developing science teachers' pedagogical content knowledge. Journal of Research in Science Teaching, 35(6), 673-695. 

  48. Yoo, K. W., Jung, J. W., Kim, Y. S., & Kim, H. B. (2018). Understanding Qualitative Research Methods. Seoul: ParkYoungStory. 

저자의 다른 논문 :

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로