$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] Detection and quantification of bolt loosening using RGB-D camera and Mask R-CNN

Smart structures and systems, v.27 no.5, 2021년, pp.783 - 793  

Chung, Junyeon (Department of Civil and Environmental Engineering, Korea Advanced Institute for Science and Technology) ,  Sohn, Hoon (Department of Civil and Environmental Engineering, Korea Advanced Institute for Science and Technology)

Abstract AI-Helper 아이콘AI-Helper

Bolt loosening is one of the most common types of damage for bolt-connected plates. Existing vision techniques detect bolt loosening based on the measurement of bolt rotation or the exposure of bolt threads. However, these techniques examine bolt tightness only in a qualitative manner, or require a ...

Keyword

참고문헌 (28)

  1. Benkhoui, Y., El Korchi, T. and Reinhold, L. (2019), "UAS-based crack detection using stereo cameras: a comparative study", Proceedings of International Conference on Unmanned Aircraft Systems (ICUAS), Atlanta, GA, USA, June. 

  2. Cha, Y.-J., You, K. and Choi, W. (2016), "Vision-based detection of loosened bolts using the Hough transform and support vector machines", Autom. Constr., 71(2), 181-188. https://doi.org/10.1016/j.autcon.2016.06.008 

  3. Dubois, E. and Sabri, S. (1984), "Noise reduction in image sequences using motion-compensated temporal filtering", IEEE Trans. Commun., 32(7), 826-831. https://doi.org/10.1109/TCOM.1984.1096143 

  4. Fischler, M.A. and Bolles, R.C. (1981), "Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography", Commun. ACM, 24(6), 381-395. https://doi.org/10.1145/358669.358692 

  5. Grunnet-Jepsen, A., Sweetser, J.N., Winer, P., Takagi, A. and Woodfill, J. (2018), "Projectors for Intel® RealSenseTM Depth Cameras D4xx", Intel. 

  6. Hartley, R. and Zisserman, A. (2003), Multiple View Geometry in Computer Vision, Cambridge University Press, Cambridge, United Kingdom. 

  7. He, K., Zhang, X., Ren, S. and Sun, J. (2016), "Deep residual learning for image recognition", IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, June. 

  8. He, K., Gkioxari, G., Dollar, P. and Girshick, R. (2017), "Mask R-CNN", IEEE International Conference on Computer Vision, Venice, Italy, October. 

  9. Huynh, T.-C. and Kim, J.-T. (2017), "Quantification of temperature effect on impedance monitoring via PZT interface for prestressed tendon anchorage", Smart Mater. Struct., 26(12), 125004. https://doi.org/10.1088/1361-665X/aa931b 

  10. Huynh, T. and Kim, J. (2018), "RBFN-based temperature compensation method for impedance monitoring in prestressed tendon anchorage", Struct. Control Health Monit., 25(6), e2173. https://doi.org/10.1002/stc.2173 

  11. Huynh, T.-C., Dang, N.-L. and Kim, J.-T. (2018), "Preload monitoring in bolted connection using piezoelectric-based smart interface", Sensors, 18(9), 2766. https://doi.org/10.3390/s18092766 

  12. Huynh, T.-C., Park, J.-H., Jung, H.-J. and Kim, J.-T. (2019), "Quasi-autonomous bolt-loosening detection method using vision-based deep learning and image processing", Autom. Constr., 105, 102844. https://doi.org/10.1016/j.autcon.2019.102844 

  13. Korea Expressway Corporation (2013), "Improvement of bridge inspection system by the damage analysis", Korea Expressway Corporation. 

  14. Lin, T.-Y., Maire, M., Belongie, S., Hays, J, Perona, P., Ramanan, D., Dollar, P. and Zitnick C.L. (2014), "Microsoft COCO: common objects in context", Proceedings of European Conference on Computer Vision, Zurich, Switzerland, September. 

  15. Lin, T.-Y., Dollar, P., Girshick, R., He, K., Hariharan, B. and Belongie, S. (2017), "Feature pyramid networks for object detection", Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, July. 

  16. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S. and Cheng-Yang, F. (2016), "SSD: single shot multibox detector", Proceedings of European Conference on Computer Vision, Amsterdam, The Netherlands, October. 

  17. Park, J.-H., Huynh, T.-C., Choi, S.-H. and Kim, J.-T. (2015), "Vision-based technique for bolt-loosening detection in wind turbine tower", Wind Struct., Int. J., 21(6), 709-726. https://doi.org/10.12989/was.2015.21.6.709 

  18. Ramana, L., Choi, W. and Cha, Y.-J. (2019), "Fully automated vision-based loosened bolt detection using the Viola-Jones algorithm", Struct. Health Monit., 18(2), 422-434. https://doi.org/10.1177/1475921718757459 

  19. Redmon, J. and Farhadi, A. (2018), "YOLOv3: An incremental improvement", arXiv Prepr. arXiv1804.02767. 

  20. Ren, S., He, K., Girshick, R. and Sun, J. (2015), "Faster R-CNN: towards real-time object detection with region proposal networks", Neural Inform. Process. Syst., Montreal, Canada, December. 

  21. Simonyan, K. and Zisserman, A. (2014), "Very deep convolutional networks for large-scale image recognition", arXiv Prepr. arXiv1409.1556. 

  22. Suda, M., Hasuo, Y., Kanaya, A., Ogura, Y. Takishita, T. and Suzuki, Y. (1992), "Development of ultrasonic axial bolting force inspection system for turbine bolts in thermal power plants", JSME Int. J. Ser. 1, Solid Mech. Strength Mater., 35(2), 216-219. https://doi.org/10.1299/jsmea1988.35.2_216 

  23. Torrey, L. and Shavlik, J. (2010), "Transfer learning", in Handbook of Research on Machine Learning Applications and Trends: Algorithms, Methods, and Techniques, IGI Global, PA, USA. 

  24. Van Dyk, D.A. and Meng, X.-L. (2001), "The art of data augmentation", J. Comput. Graph. Stat., 10(1), 1-50. https://doi.org/10.1198/10618600152418584 

  25. Wang, T., Song, G., Liu, S., Li, Y. and Xiao, H. (2013a), "Review of bolted connection monitoring", Int. J. Distrib. Sens. Netw., 9(12), 871213. https://doi.org/10.1155/2013/871213 

  26. Wang, T., Song, G., Wang, Z. and Li, Y. (2013b), "Proof-of-concept study of monitoring bolt connection status using a piezoelectric based active sensing method", Smart Mater. Struct., 22(8), 87001. https://doi.org/10.1088/0964-1726/22/8/087001 

  27. Zhang, Y., Sun, X., Loh, K.J., Su, W., Xue, Z. and Zhao, X. (2019), "Autonomous bolt loosening detection using deep learning", Struct. Health Monit., 19(1), 105-122. https://doi.org/10.1177/1475921719837509 

  28. Zhao, X., Zhang, Y. and Wang, N. (2019), "Bolt loosening angle detection technology using deep learning", Struct. Control Health Monit., 26(1), e2292. https://doi.org/10.1002/stc.2292 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로