$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Secure Object Detection Based on Deep Learning 원문보기

Journal of information processing systems, v.17 no.3, 2021년, pp.571 - 585  

Kim, Keonhyeong (School of Electronics and Engineering, Kyungpook National University) ,  Jung, Im Young (School of Electronics and Engineering, Kyungpook National University)

Abstract AI-Helper 아이콘AI-Helper

Applications for object detection are expanding as it is automated through artificial intelligence-based processing, such as deep learning, on a large volume of images and videos. High dependence on training data and a non-transparent way to find answers are the common characteristics of deep learni...

주제어

표/그림 (21)

참고문헌 (50)

  1. S. Dasiopoulou, V. Mezaris, I. Kompatsiaris, V. Papastathis, and M. Strintzis, "Knowledge-assisted semantic video object detection," IEEE Transactions on Circuits and Systems for Video Technology, vol. 15, no. 10, pp. 1210-1224, 2005. 

  2. D. Cao, Z. Chen, and L. Gao, "An improved object detection algorithm based on multi-scaled and deformable convolutional neural networks," Human-centric Computing and Information Sciences, vol. 10, article no. 14, 2020. 

  3. Y. Liu, X. Chen, C. Liu, and D. Song, "Delving into transferable adversarial examples and blackbox attacks," in Proceedings of the 5th International Conference on Learning Representations (ICLR), Toulon, France, 2017. 

  4. N. Papernot, P. McDaniel, and I. Goodfellow, "Transferability in machine learning: from phenomena to black-box attacks using adversarial samples," 2016 [Online]. Available: https://arxiv.org/abs/1605.07277. 

  5. N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and A. Swami, "Practical black-box attacks against machine learning," in Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security, Abu Dhabi, United Arab Emirates, 2017, pp. 506-519. 

  6. P. Y. Chen, H. Zhang, Y. Sharma, J. Yi, and C. J. Hsieh, "Zoo: zeroth order optimization based blackbox attacks to deep neural networks without training substitute models," in Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security (AISec), Dallas, TX, 2017, pp. 15-26. 

  7. W. Brendel, J. Rauber, and M. Bethge, "Decision-based adversarial attacks: reliable attacks against black-box machine learning models," in Proceedings of the 6th International Conference on Learning Representations (ICLR), Vancouver, Canada, 2018. 

  8. J. H. Metzen, T. Genewein, V. Fischer, and B. Bischoff, "On detecting adversarial perturbations," 2017 [Online]. Available: https://arxiv.org/abs/1702.04267. 

  9. X. Zhang, X. Zhu, and L. Lessard, "Online data poisoning attacks," 2019 [Online]. Available: https://arxiv.org/abs/1903.01666. 

  10. C. Burkard and B. Lagesse, "Analysis of causative attacks against SVMs learning from data streams," in Proceedings of the 3rd ACM on International Workshop on Security and Privacy Analytics, Scottsdale, AZ, 2017, pp. 31-36. 

  11. Y. Chen and X. Zhu, "Optimal adversarial attack on autoregressive models by manipulating the environment," 2019 [Online]. Available: https://arxiv.org/abs/1902.00202. 

  12. B. Li, Y. Wang, A. Singh, and Y. Vorobeychik, "Data poisoning attacks on factorization-based collaborative filtering," Advances in Neural Information Processing, vol. 29, pp. 1885-1893, 2016. 

  13. K. Eykholt, I. Evtimov, E. Fernandes, B. Li, A. Rahmati, C. Xiao, A. Prakash, T. Kohno, and D. Song, "Robust physical-world attacks on deep learning models," 2018 [Online]. Available: https://arxiv.org/abs/1707.08945. 

  14. Y. Dong, T. Pang, H. Su, and J. Zhu, "Evading defenses to transferable adversarial examples by translation-invariant attacks," in Proceedings of IEEE Conference of Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, 2019, pp. 4312-4321. 

  15. A. Kurakin, I. Goodfellow, S. Bengio, "Adversarial examples in the physical world," in Proceedings of the 5th International Conference on Learning Representations (ICLR), Toulon, France, 2017. 

  16. A. Athalye, L. Engstrom, A. Ilyas, and K. Kwok, "Synthesizing robust adversarial examples," in Proceedings of the 35th International Conference on Machine Learning (ICML), Stockholm, Sweden, 2018, pp. 284-293. 

  17. I. J. Goodfellow, J. Shlens, and C. Szegedy, "Explaining and harnessing adversarial examples," in Proceedings of the 3rd International Conference on Learning Representations(ICLR), San Diego, CA, 2015. 

  18. N. Carlini and D. Wagner, "Towards evaluating the robustness of neural networks," in Proceedings of 2017 IEEE Symposium on Security and Privacy, San Jose, CA, 2017, pp. 39-57. 

  19. M. J. J. Ghrabat, G. Ma, I. Y. Maolood, S. S. Alresheedi, and Z. A. Abduljabbar, "An effective image retrieval based on optimized genetic algorithm utilized a novel SVM-based convolutional neural network classifier," Human-centric Computing and Information Sciences, vol. 9, article no. 31, 2019. 

  20. Y. Liu, Z. Ma, X. Liu, S. Ma, and K. Ren, "Privacy-preserving object detection for medical images with faster R-CNN," IEEE Transactions on Information Forensics and Security, 2019. https://doi.org/10.1109/TIFS.2019.2946476 

  21. L. Wang, L. Li, J. Li, J. Li, B. B. Gupta, and L. Xia, "Compressive sensing of medical images with confidentially homomorphic aggregations," IEEE Internet of Things Journal, vol. 6, no. 2, pp. 1402-1409, 2019. 

  22. M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Talwar, and L. Zhang, "Deep learning with differential privacy," in Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, Vienna, Austria, 2016, pp. 308-318. 

  23. C. Yin, B. Zhou, Z. Yin, and J. Wang, "Local privacy protection classification based on human-centric computing," Human-centric Computing and Information Sciences, vol. 9, article no. 33, 2019. 

  24. Q. Jia, L. Guo, Z. Jin, and Y. Fang, "Preserving model privacy for machine learning in distributed systems," IEEE Transactions on Parallel and Distributed Systems, vol. 29, no. 8, pp. 1808-1822, 2018. 

  25. N. A. Memon, "Watermarking of medical images for content authentication and copyright protection," Ph.D. dissertation, GIK Institute of Engineering Sciences and Technology, Topi, Pakistan, 2010. 

  26. C. Wang, H. Zhang, X. Zhou, "LBP and DWT based fragile watermarking for image authentication," Journal of Information Processing Systems, vol. 14, no. 3, pp. 666-679, 2018. 

  27. C. Wang, H. Zhang, and X. Zhou, "Review on self-embedding fragile watermarking for image authentication and self-recovery," Journal of Information Processing Systems, vol. 14, no. 2, pp. 510-522, 2018. 

  28. N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami, "Distillation as a defense to adversarial perturbations against deep neural networks," in Proceedings of the 2016 IEEE Symposium on Security & Privacy, San Jose, CA, 2016, pp. 582-597. 

  29. D. J. Miller, Z. Xiang, and G. Kesidis, "Adversarial learning in statistical classification: a comprehensive review of defenses against attacks," 2019 [Online]. Available: https://arxiv.org/abs/1904.06292. 

  30. S. Patel, S. Garasia, and D. Jinwala, "An efficient approach for privacy preserving distributed k-means clustering based on Shamir's secret sharing scheme," in Trust Management VI. Heidelberg, Germany: Springer, 2012, pp. 129-141. 

  31. M. Beye, Z. Erkin, and R. L. Lagendijk, "Efficient privacy preserving k-means clustering in a three-party setting," in Proceedings of IEEE International Workshop on Information Forensics and Security, Iguacu Falls, Argentina, 2011, pp. 1-6. 

  32. M. S. Riazi, C. Weinert, O. Tkachenko, E. M. Songhori, T. Schneider, and F. Koushanfar, "Chameleon: a hybrid secure computation framework for machine learning applications," in Proceedings of the 2018 on Asia Conference on Computer and Communications Security (ASIACCS), Incheon, Republic of Korea, 2018, PP. 707-721. 

  33. X. Wu, "An algorithm for reversible information hiding of encrypted medical images in homomorphic encrypted domain," Discrete & Continuous Dynamical Systems-S, vol. 12, no. 4-5, pp. 1441-1455, 2019. 

  34. J. Chao, A. A. Badawi, B. Unnikrishnan, J. Lin, C. F. Mun, J. M. Brown, et al., "CaRENets: compact and resource-efficient CNN for homomorphic inference on encrypted medical images," 2019 [Online]. Available: https://arxiv.org/abs/1901.10074. 

  35. Z. Ma, Y. Liu, X. Liu, J. Ma, and F. Li, "Privacy-preserving outsourced speech recognition for smart IoT devices," IEEE Internet of Things Journal, vol. 6, no. 5, pp. 8406-8420, 2019. 

  36. Y. Zheng, H. Cui, C. Wang, and J. Zhou, "Privacy-preserving image denoising from external cloud databases," IEEE Transactions on Information Forensics and Security, vol. 12, no. 6, pp. 1285-1298, 2017. 

  37. M. Noura, H. Noura, A. Chehab, M. M. Mansour, L. Sleem, and R. Couturier, "A dynamic approach for a lightweight and secure cipher for medical images," Multimedia Tools and Applications, vol. 77, no. 23, pp. 31397-31426, 2018. 

  38. K. Y. Chu, Y. H. Kuo, and W. H. Hsu, "Real-time privacy-preserving moving object detection in the cloud," in Proceedings of the 21st ACM International Conference on Multimedia, Barcelona, Spain, 2013, pp. 597-600. 

  39. A. Sen, S. Alfeld, X. Zhang, A. Vartanian, Y. Ma, and X. Zhu, "Training set camouflage," in Decision and Game Theory for Security. Cham, Switzerland: Springer, 2018, pp. 59-79. 

  40. P. Selvaraj and R. Varatharajan, "Whirlpool algorithm with hash function based watermarking algorithm for the secured transmission of digital medical images," Mobile Networks and Applications, 2018. https://doi.org/10.1007/s11036-018-1057-4 

  41. S. M. Mousavi, A. Naghsh, and S. Abu-Bakar, "Watermarking techniques used in medical images: a survey," Journal of Digital Imaging, vol. 27, no. 6, pp. 714-729, 2014. 

  42. S. Gu and L. Rigazio, "Towards deep neural network architectures robust to adversarial examples," in Proceedings of the 3rd International Conference on Learning Representations, San Diego, CA, 2015. 

  43. J. Aigrain and M. Detyniecki, "Detecting adversarial examples and other misclassifications in neural networks by introspection," 2019 [Online]. https://arxiv.org/abs/1905.09186. 

  44. F. Tramer, A. Kurakin, N. Papernot, D. Boneh, and P. McDaniel, "Ensemble adversarial training: Attacks and defenses," in Proceedings of the 6th International Conference on Learning Representations (ICLR), Vancouver, Canada, 2018. 

  45. F. Liao, M. Liang, Y. Dong, T. Pang, X. Hu, and J. Zhu, "Defense against adversarial attacks using high-level representation guided denoiser," 2018 [Online]. Available: https://arxiv.org/abs/1712.02976. 

  46. C. Xie, J. Wang, Z. Zhang, Z. Ren, and A. Yuille, "Mitigating adversarial effects through randomization," 2018 [Online]. Available: https://arxiv.org/abs/1711.01991. 

  47. C. Guo, M. Rana, M. Cisse, and L. V. D. Maaten, "Countering adversarial images using input transformations," in Proceedings of the 6th International Conference on Learning Representations (ICLR), Vancouver, Canada, 2018. 

  48. A. Shamir, "How to share a secret," Communications of the ACM, vol. 22, no. 11, pp. 612-613, 1979. 

  49. C. Dwork and A. Roth, "The algorithmic foundations of differential privacy," Theoretical Computer Science, vol. 9, nos. 3-4, pp. 211-407, 2014. 

  50. D. W. Hosmer Jr, S. Lemeshow, and R. X. Sturdivant, Applied Logistic Regression. Hoboken, NJ: John Wiley & Sons, 2013. 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로