최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기우주기술과 응용 = Journal of space technology and applications, v.1 no.1, 2021년, pp.49 - 63
서행자 (한컴인스페이스) , 김동영 (한컴인스페이스) , 박상민 (한컴인스페이스) , 최명진 (한컴인스페이스)
The exploration of the solar system is carried out through various payloads, and accordingly, many research results are emerging. We tried to apply deep-learning as a method of studying the bodies of solar system. Unlike Earth observation satellite data, the data of solar system differ greatly from ...
Wikipedia, Crater counting (2021) [Internet], viewed 2021 Feb 15, available from: https://en.wikipedia.org/wiki/Crater_counting
Strobel N, Planet surfaces (2019) [Internet], viewed 2021 Feb 15, available from: http://www.astronomynotes.com/solarsys/s8b.htm
Robbins SJ, Hynek BM, A new global database of Mars impact craters ≥1 km: 1. database creation, properties, and parameters, J. Geophys. Res. 117, E05004 (2012). https://doi.org/10.1029/2011JE003966
Robbins S, Mars crater catalog v1 Robbins (2012) [Internet], viewed 2021 Feb 15, available from: https://astrogeology.usgs.gov/search/map/Mars/Research/Craters/RobbinsCraterDatabase_20120821
Stepinski TF, Ding W, Vilalta R, Detecting impact craters in planetary images using machine learning, in Intelligent Data Analysis for Real-Life Applications: Theory and Practice, eds. Benedito RM, Global IGI (IGI Global, Hershey, PA, 2012).
Silburt A, Ali-Dib M, Zhu C, Jackson A, Valencia D, et al., Lunar crater identification via deep learning, Icarus. 317, 27-38 (2019). https://doi.org/10.1016/j.icarus.2018.06.022
Washington University in St. Louis, Lunar Obital Data Explorer (2021) [Internet], viewed 2021 Feb 15, available from: https://ode.rsl.wustl.edu/moon/
NASA, Lunar Reconnaissance Orbiter Camera (2021) [Internet], viewed 2021 Feb 15, available from: http://wms.lroc.asu.edu/lroc/view_rdr/SHAPEFILE_LROC_5TO20KM_CRATERS_90ETO180E
Bochkovskiy A, Wang CY, Liao HYM, YOLOv4: optimal speed and accuracy of object detection, in Conference on Computer Vision and Pattern Recognition, online, 23 Apr 2020.
Wang CY, Liao HYM, Yeh, IH, Wu YH, Chen PY, et al., CSPNET: a new backbone that can enhance learning capability of CNN, in Conference on Computer Vision and Pattern Recognition, Long Beach, CA, 15-21 Jun 2019.
He K, Zhang X, Ren S, Sun J, Spatial pyramid pooling in deep convolutional networks for visual recognition, in Conference on Computer Vision and Pattern Recognition, Brisbane, Australia, 23 Apr 2015.
Liu S, Qi L, Qin H, Shi J, Jia J, Path aggregation network for instance segmentation, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, 18-22 Sep 2018.
Lin TY, Dollar P, Girshick R, He K, Hariharan B, et al., Feature pyramid networks for object detection, in Conference on Computer Vision and Pattern Recognition, Honolulu, HI, 21-26 Jul 2017.
Kirchoff MR, Chapman CR, Marchi S, Curtis KM, Enke B, et al., Ages of large lunar impact craters and implications for bombardment during the Moon's middle age, Icarus. 225, 325-341 (2013). https://doi.org/10.1016/j.icarus.2013.03.018
ShadowCam, Seeing into the Shadows (2018) [Internet], viewed 2021 Feb 15, available from: https://www.nasa.gov/feature/moon-s-south-pole-in-nasa-s-landing-sites
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
저자가 APC(Article Processing Charge)를 지불한 논문에 한하여 자유로운 이용이 가능한, hybrid 저널에 출판된 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.