$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

인공생산 뱀장어(Anguilla japonica) 자어의 소화기관 발달 특성
Histological Development of the Digestive System in Artificially Produced Anguilla japonica Larvae 원문보기

한국수산과학회지 = Korean journal of fisheries and aquatic sciences, v.54 no.3, 2021년, pp.298 - 310  

신민규 (국립수산과학원 양식연구과) ,  김신권 (국립수산과학원 양식연구과) ,  이배익 (국립수산과학원 양식연구과) ,  최윤희 (부경대학교 해양바이오신소재학과) ,  유용운 (국립수산과학원 양식연구과)

Abstract AI-Helper 아이콘AI-Helper

Freshwater eel Anguilla japonica is a commercially important species in East Asia. However, given the continuously decreasing resources due to many problems as climate change, habitat destruction and overfishing, mass seed production is crucial. In particular, the eel larvae present a unique life hi...

주제어

표/그림 (8)

참고문헌 (70)

  1. Aoyama J, Watanabe S, Miller MJ, Mochioka N, Otake T, Yoshinaga T and Tsukamoto K. 2014. Spawning sites of the Japanese eel in relation to oceanographic structure and the West Mariana ridge. PLoS ONE 9, e88759. https://doi.org/10.1371/journal.pone.0088759. 

  2. Aruho C, Walakira JK, Bugenyi F, Rutaisire J and Reading BJ. 2019. Morphology and functional ontogeny of the digestive tract of Barbus altianalis larvae. Afr Zool 54, 137-149. https://doi.org/10.1080/15627020.2019.1642140. 

  3. Burkitt HG, Young B and Heath JW. 1993. Wheather's functional histology: a text and colour atlas, 3rd ed. Churchill Livingstone, Edinburgh, U.K. 

  4. Chen JZ, Huang SL and Han YS. 2014. Impact of long-term habitat loss on the Japanese eel Anguilla japonica. Estuar Coast Shelf Sci 151, 361-369. https://doi.org/10.1016/j.ecss.2014.06.004. 

  5. Dou SZ, Masuda R, Tanaka M and Tsukamoto K. 2005. Effects of temperature and delayed initial feeding on the survival and growth of Japanese flounder larvae. J Fish Biol 66, 362-377. https://doi.org/10.1111/j.0022-1112.2005.00601.x. 

  6. Fhyn HJ. 1989. First feeding of marine fish larvae: Are free amino acids the source of energy?. Aquaculture 80, 111-120. https://doi.org/10.1016/0044-8486(89)90277-9. 

  7. Garcia Hernandez MP, Lozano MT, Elbal MT and Agulleiro B. 2001. Development of the digestive tract of sea bass (Dicentrarchus labrax L). Light and electron microscopic studies. Anat Embryol 204, 39-57. https://doi.org/10.1007/s004290100173. 

  8. Govoni JJ, Boehlert GW and Watanabe Y. 1986. The physiology of digestion in fish larvae. Environ Biol Fish 16, 59-77. https://doi.org/10.1007/BF00005160. 

  9. Hamlin HJ, Hunt von Herbing I and Kling LJ. 2000. Histological and morphological evaluations of the digestive tract and associated organs of haddock throughout posthatching ontogeny. J Fish Biol 57, 716-732. https://doi.org/10.1111/j.1095-8649.2000.tb00270.x. 

  10. Hassanpour M and Joss J. 2011. The lungfish digestive system. In: The biology of lungfishes. Jorgensen JM and Joss J, eds. CRC Press, Boca Raton, U.S.A., 341-391. 

  11. Hernandez LP. 2000. Intraspecific scaling of feeding mechanics in an ontogenetic series of zebrafish Danio rerio. J Exp Biol 203, 3033-3043. https://doi.org/10.1242/jeb.203.19.3033. 

  12. Herrera M, Hachero-Cruzado I, Naranjo A and Mancera JM. 2010. Organogenesis and histological development of the wedge sole Dicologoglossa cuneata M. larva with special reference to the digestive system. Rev Fish Biol Fisher 20, 489-497. https://doi.org/10.1007/s11160-010-9161-y. 

  13. Hibiya T. 1970. Success in collecting fully matured eel eggs. Aquaculture (Yoshoku) 3, 12-15. 

  14. Hirji KN and Courtney WAM. 1983. Non-specific carboxylic esterase activity in the digestive tract of the perch Perca fluviatilis. J Fish Biol 22, 1-7. https://doi.org/10.1111/j.1095-8649.1983.tb04719.x. 

  15. Hsu HY, Chen SH, Cha YR, Tsukamoto K, Lin CY and Han YS. 2015. De Novo assembly of the whole transcriptome of the wild embryo, preleptocephalus, Leptocephalus, and glass eel of Anguilla japonica and deciphering the digestive and absorptive capacities during early development. PLoS One 10, e0139105. https://doi.org/10.1371/journal.pone.0139105. 

  16. Huertas M, Canario AVM and Hubbard PC. 2008. Chemical communication in the genus anguilla: a mini review. Behaviour 145, 1389-1407. https://doi.org/10.1163/156853908785765926. 

  17. Ishikawa S, Suzuki K, Inagaki T, Watanabe S, Kimura Y, Okamura A, Otake T, Mochioka N, Suzuki Y, Hasumoto H, Oya M, Miller MJ, Lee TW, Fricke H and Tsukamoto K. 2001. Spawning time and place of the Japanese eel Anguilla japonica in the North Equatorial Current of the western North Pacific Ocean. Fish Sci 67, 1097-1103. https://doi.org/10.1046/j.1444-2906.2001.00366.x. 

  18. Iwai T and Rosenthal H. 1981. Ciliary movements in guts of early clupeoid and salangid larvae. Mar Ecol Prog Ser 4, 365-367. 

  19. Jalali S, Jamili Sh, Sayyad Bourani M, Ramezani-Fard E and Sepahdari A. 2020. Ontogenic development of digestive accessory glands in larval and juvenile vimba bream, Vimba vimba (Pallas, 1814). Iran J Fish Sci 19, 99-110. https://doi.org/10.22092/IJFS.2019.118838. 

  20. Jiang Z, Jiang G and Zhang B. 2002. Studies on feeding and growth of larval tiger puffer Takifugu rubripes. J Dalian Fish Uinv 17, 20-24. 

  21. Kaji T, Kodama M, Arai H, Tagawa M and Tanaka M. 2002. Precocious development of the digestive system in relation to early appearance of piscivory in striped bonito Sarda orientalis larvae. Fish Sci 68, 1212-1218. https://doi.org/10.1046/j.1444-2906.2002.00557.x. 

  22. Kaji T, Tanaka M, Oka M, Ohsumi S, Teruya K and Hirokawa J. 1999. Growth and morphological development of laboratory-reared yellowfin tuna Thunnus albacares larvae and early juveniles, with special emphasis on the digestive system. Fish Sci 65, 700-707. https://doi.org/10.2331/fishsci.65.700. 

  23. Kim DJ, Kang EJ, Bae JY, Park MW and Kim EO. 2007. Development of the eggs and pre-leptocephalus larvae by natural spawning of artificially-matured Japanese eel Anguilla japonica. J Aquacult 20, 160-167. 

  24. Kim SK, Lee BI, Kim DJ and Lee NS. 2014. Development of slurry type diet for the growing Leptocephalus, eel larvae Anguilla japonica. J Fish Mar Sci Educ 26, 1209-1216. https://doi.org/10.13000/JFMSE.2014.26.6.1209. 

  25. Kjorsvik E, Pittman K and Pavlov D. 2004. From fertilization to the end of metamorphosis-functional development. In: Culture of coldwater marine fish. Moksness E, Kjorsvik E and Olsen Y, eds. Blackwell Publishing Ltd, Oxford, U.K., 204-278. https://doi.org/10.1002/9780470995617.ch6. 

  26. Kumar A, Pradhan PK and Chadha NK. 2019. Ontogeny of the digestive tract in stinging catfish Heteropneustes fossilis (Bloch) larvae. Fish Physiol Biochem 45, 667-679. https://doi.org/10.1007/s10695-019-00618-5. 

  27. Kurokawa H, Kagawa H, Ohta H, Tanaka H, Okuzawa K and Hirose K. 1995. Development of digestive organs and feeding ability in larvae of Japanese eel Anguilla japonica. Can J Fish Aquat Sci 52, 1030-1036. https://doi.org/10.1139/f95-101. 

  28. Kurokawa T and Pedersen BH. 2003. The digestive system of eel larvae. In: Eel biology. Aida K, Tsukamoto K and Yamauchi K, eds. Springer, Tokyo, Japan, 435-444. 

  29. Kurokawa T, Suzuki T, Ohta H, Kagawa H, Tanaka H and Unuma T. 2002. Expression of pancreatic enzyme genes during the early larval stage of Japanese eel Anguilla japonica. Fish Sci 68, 736-744. https://doi.org/10.1046/j.1444-2906.2002.00487.x. 

  30. Kuroki M, Aoyama J, Miller MJ, Yoshinaga T, Shinoda A, Hagihara S and Tsukamoto K. 2009. Sympatric spawning of Anguilla marmorata and Anguilla japonica in the western North Pacific Ocean. J Fish Biol 74, 1853-1865. https://doi.org/10.1111/j.1095-8649.2009.02299.x. 

  31. Mai K, Yu H, Ma H, Duan Q, Gisbert E, Zambonino-Infante JL and Cahu CL. 2005. A histological study on the development of the digestive system of Pseudosciaena crocea larvae and juveniles. J Fish Biol 67, 1094-1106. https://doi.org/10.1111/j.0022-1112.2005.00812.x. 

  32. Miller MJ, Chikaraishi Y, Ogawa NO, Yamada Y. Tsukamoto K and Ohkouchi N. 2013. A low trophic position of Japanese eel larvae indicates feeding on marine snow. Biol Lett 9, 20120826. https://doi.org/10.1098/rsbl.2012.0826. 

  33. Miller MJ, Marohn L, Wysujack K, Freese M, Pohlmann JD, Westerberg H, Tsukamoto K and Hanel R. 2019. Morphology and gut contents of anguillid and marine eel larvae in the Sargasso Sea. Zool Anzeig 279, 138-151. https://doi.org/10.1016/j.jcz.2019.01.008. 

  34. Mochioka N. 2003. Leptocephali. In: Eel biology. Aida K, Tsukamoto K and Yamauchi K, eds. Springer, Tokyo, Japan, 51-60. 

  35. Morrison CM. 1993. Histology of the Atlantic cod Gadus morhua: An atlas. Part 4. Eleutheroembryo and larva. Can Spec Publ Fish Aquat Sci 119, 1-496. 

  36. Okamura A, Horie N, Mikawa N, Yamada Y and Tsukamoto K. 2014. Recent advances in artificial production of glass eels for conservation of anguillid eel populations. Ecol Freshw Fish 23, 95-110. https://doi.org/10.1111/eff.12086. 

  37. Okamura A, Yamada Y, Horie N, Mikawa N and Tsukamoto K. 2019. Long-term rearing of Japanese eel larvae using a liquid-type diet: food intake, survival and growth. Fish Sci 85, 687-694. https://doi.org/10.1007/s12562-019-01316-0. 

  38. Otake T, Nogami K and Maruyama K. 1993. Dissolved and particulate organic matter as possible food sources for eel leptocephali. Mar Ecol Prog Ser 92, 27-34. 

  39. Otake T. 1996. Fine structure and function of the alimentary canal in leptocephali of the Japanese eel Anguilla japonica. Fish Sci 62, 28-34. 

  40. Ozaki Y, Tanaka H, Kagawa H, Ohta H, Adachi S and Yamauchi K. 2006. Fine structure and differentiation of the alimentary canal in captive-bred Japanese eel Anguilla japonica preleptocephali. Fish Sci 72, 13-19. https://doi.org/10.1111/j.1444-2906.2006.01110.x 

  41. Pena R, Dumas S, Villalejo-Fuerte M and Ortiz-Galindo JL. 2003. Ontogenetic development of the digestive tract in reared spotted sand bass Paralabrax maculatofasciatus larvae. Aquaculture 219, 633-644. https://doi.org/10.1016/S0044-8486(02)00352-6. 

  42. Ribeiro L, Sarasquete C and Dinis MT. 1999. Histological and histochemical development of the digestive system of Solea senegalensis (Kaup 1858) larvae. Aquaculture 171, 293-308. https://doi.org/10.1016/S0044-8486(98)00496-7. 

  43. Ronnestad I, Yufera M, Ueberschar B, Ribeiro L, Saele O and Boglione C. 2013. Feeding behaviour and digestive physiology in larval fish: current knowledge, and gaps and bottlenecks in research. Rev Aquac 5, S59-S98. https://doi.org/10.1111/raq.12010. 

  44. Ross MH and Pawlina W. 2011. Histology: a Text and Atlas, with Correlated Cell and Molecular Biology (6th Ed). Wolters Kluwer Health/Lippincott Williams & Wilkins, Philadelphia, PA, U.S.A., 568-687. 

  45. Sarasquete C, Gisbert E, Ribeiro L, Vieira L and Dinis MT. 2001. Glycoconjugates in epidermal, branchial and digestive mucous cells and gastric glands of gilthead sea bream Sparus aurata, Senegal sole Solea senegalensis and Siberian sturgeon Acipenser baeri development. Eur J Histochem 45, 267-278. https://doi.org/10.4081/1637. 

  46. Satoh H. 1979. Try for perfect culture of the Japanese eel. Iden 33, 23-30. 

  47. Scocco P, Accili D, Menghi G and Ceccarelli P. 1998. Unusual glycoconjugates in the oesophagus of a tilapine polyhybrid. J Fish Biol 53, 39-48. https://doi.org/10.1111/j.1095-8649.1998.tb00107.x. 

  48. Segner H, Storch V, Reinecke M, Kloas W and Hanke W. 1994. The development of functional digestive and metabolic organs in turbot Scophthalmus maximus. Mar Biol 119, 471-486. https://doi.org/10.1007/BF00347544. 

  49. Shan X, Quan H and Dou S. 2008. Effects of delayed first feeding on growth and survival of rock bream Oplegnathus fasciatus larvae. Aquaculture 277, 14-23. https://doi.org/10.1016/j.aquaculture.2008.01.044. 

  50. Shin MG, Lee SG, Jeon HR, Joo JH and Gwak WS. 2019. Effects of starvation and delayed feeding on growth and survival of Pacific cod Gadus macrocephalus larvae. Kor J Ichthyol 22, 121-125. 

  51. Tanaka H, Kagawa H and Ohta H. 2001. Production of leptocephali of Japanese eel Anguilla japonica in captivity. Aquaculture 201, 51-60. https://doi.org/10.1016/S0044-8486(01)00553-1. 

  52. Tanaka H, Kagawa H, Ohta H, Okuzawa K and Hirose K. 1995. The first report of eel larvae ingesting rotifers. Fish Sci 61, 171-172. https://doi.org/10.2331/fishsci.61.171. 

  53. Tanaka H, Kagawa H, Ohta H, Unuma T and Nomura K. 2003. The first production of glass eel in captivity: fish reproductive physiology facilitates great progress in aquaculture. Fish Physiol Biochem 28, 493-497. https://doi.org/10.1023/B:FISH.0000030638.56031.ed. 

  54. Tanaka M. 1969. Studies on the structure and function of the digestive system in teleost larvae-I. Development of the digestive system during prelarval stage. Jpn J Ichthyol 16, 1-9. https://doi.org/10.11369/jji1950.16.1. 

  55. Tesch FW. 2003. Developmental stages and distribution of the eel species. In: The eel (3th Ed). Thorpe JE, ed. Blackwell Science Ltd., Oxford, U.K., 73-118. 

  56. Trevino L, Alvarez-Gonzaalez CA, Perales-Garciia N, Arevalo-Galan L, Uscanga-Martinez A, Marquez-Couturier G, Fernaandez I and Gisbert E. 2011. A histological study of the organogenesis of the digestive system in bay Snook Petenia splendida Gunther, 1862 from hatching to the juvenile stage. J Appl Ichthyol 27, 73-82. https://doi.org/10.1111/j.1439-0426.2010.01608.x. 

  57. Tsukamoto K and Miller M. 2021. The mysterious feeding ecology of leptocephali: a unique strategy of consuming marine snow materials. Fish Sci 87, 11-29. https://doi.org/10.1007/s12562-020-01477-3. 

  58. Tsukamoto K, Aoyama J and Miller MJ. 2009. Present status of the Japanese eel: resources and recent research. In: Eels at the edge on American Fisheries Society Symposium. Casselman J, Cairns D, eds. Bethesda, Rockville, MD, U.S.A., 58, 21-35. 

  59. Tsukamoto K, Otake T, Mochioka N, Lee TW, Fricke H, Inagaki T, Aoyama J, Ishikawa S, Kimura S, Miller MJ, Hasumoto H, Oya M and Suzuki Y. 2003. Seamounts, new moon and eel spawning: the search for the spawning site of the Japanese eel. Environ Biol Fish 66, 221-229. https://doi.org/10.1023/A:1023926705906. 

  60. Tsukamoto K. 2014. Aquaculture production of glass eels as a possible conservation measure for freshwater eels. In: 144th Annual Meeting of the American Fisheries Society. Quebec City, Quebec, Canada, 17-21. 

  61. Walford J and Lam TJ. 1993. Development of digestive tract and proteolytic enzyme activity in seabass Lates calcarifer larvae and juveniles. Aquaculture 109, 187-205. https://doi.org/10.1016/0044-8486(93)90215-K. 

  62. Westerberg H. 1990. A proposal regarding the source of nutrition of leptocephalus larvae. Int Revue Ges Hydrobiol 75, 863-864. https://doi.org/10.1002/iroh.19900750632. 

  63. Yamada Y, Okamura A, Mikawa N, Horie N and Tsukamoto K. 2019. A new liquid-type diet for leptocephali in mass production of artificial glass eels. Fish Sci 85, 545-551. https://doi.org/10.1007/s12562-019-01295-2. 

  64. Yamashita Y and Aoyama T. 1985. Hatching time, yolk sac absorption, onset of feeding, and early growth of the Japanese sand eel Ammodytes personatus. Nip Sui Gak 51, 1777-1780. https://doi.org/10.2331/suisan.51.1777. 

  65. Yokota T, Nakagawa T, Murakami N, Chimura M, Tanaka H, Yamashita Y and Funamoto T. 2016. Effects of starvation at the first feeding stage on the survival and growth of walleye pollock Gadus chalcogrammus larvae. Fish Sci 82, 73-83. https://doi.org/10.1007/s12562-015-0948-6. 

  66. Yoshimatsu T. 2011. Early development of preleptocephalus larvae of the Japanese eel in captivity with special reference to the organs for larval feeding. Bull Graduate School of Bio-resources, Mie Univ 37, 11-18. 

  67. Yu TC, Tsai CL, Tsai YS and Lai JY. 1993. Induced breeding of Japanese eels Anguilla japonica. J Taiwan Fish Res 1, 27-34. 

  68. Yufera M, Moyano FJ and Martinez-Rodriguez G. 2018. The digestive function in developing fishm larvae and fry. From molecular gene expression to enzymatic activity. In: Emerging Issues in Fish Larvae Research. Yufera M, ed. Emerging Issues in Fish Larvae Research. Springer International Publishing AG, Cham, Switzerland, 51-86. https://doi.org/10.1007/978-3-319-73244-2_3. 

  69. Yufera M, Pascual E, Polo A and Sarasquete MC. 1993. Effect of starvation on the feeding ability of gilthead seabream (Sparus aurata L.) larvae at first feeding. J Exp Mar Biol Ecol 169, 259-272. https://doi.org/10.1016/0022-0981(93)90196-U. 

  70. Zambonino-Infante JL and Cahu CL. 2001. Ontogeny of the gastrointestinal tract of marine fish larvae. Comp Biochem Physiol 130, 477-487. https://doi.org/10.1016/S1532-0456(01)00274-5. 

저자의 다른 논문 :

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로