$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

한국의 남해 거문도해역에 자생하는 홍합(Mytilus coruscus)의 수심별 성장, 비만도와 저서생물의 분포
Distribution of benthic organisms and growth and obesity of mussels (Mytilus coruscus) by depth in Geomundo, south coast of Korea 원문보기

환경생물 = Korean journal of environmental biology, v.39 no.1, 2021년, pp.19 - 31  

배종일 (수중생태기술연구소) ,  황성일 (수중생태기술연구소) ,  정영호 (수중생태기술연구소) ,  김유진 (씨캠) ,  김동욱 (씨캠)

초록
AI-Helper 아이콘AI-Helper

본 연구는 거문도 해역에 자생하는 홍합의 수심별 분포특성을 파악하고 공존 또는 경쟁하며 생활하는 주변 저서 생물상을 파악하고자 연구를 진행하였다. 홍합은 수심이 낮은 곳에서 밀도가 높고 비만도가 낮은 반면, 수심이 깊어 질수록 밀도가 낮고 비만도가 높아지는 양상을 보이며, 형태적특성도 수심이 깊어질수록 증가하는 양상으로 나타났다. 이는 각장과 전중량의 상관관계식에서도 수심 2m에 비하여 수심 12 m에서 높은 상관관계를 가지는 것으로 확인되어 수심에 따라 각장이나 각고의 성장 및 전중량에 영향을 미치는 것으로 파악되었다. 주변에 서식하는 저서생물 중 해조류는 홍합의 패각을 기질에 부착하여 서식하는 소형생물과 주변환경에 서식하는 대형생물로 구분할 수 있으며, 암반조하대의 서식특성으로 수심이 깊어질수록 광량에 영향을 받아 밀도 및 생체량이 다소 감소하는 경향으로 분석되었다. 저서동물은 팔각따개비가 홍합의 패각과 주변 서식공간에 모두 분포하고, 굴의 경우는 함께 분포는 하고 있다. 그러나 수심 2 m 지점에서 굴이 우세한 지점에서 홍합이 다소 감소하는 경향을 보이며, 홍합이 우점하는 수심이 깊은 지점에서는 굴이 감소하는 경향으로 나타나 두 종 간의 공간경쟁에서 수심에 따른 영향을 보이는 것으로 파악되었다. 그 외 대형 해조류가 번성하는 지역의 경우, 홍합의 군집이 발달하지 않고 있어 대형해조류의 서식 유·무에도 홍합의 생존이 영향을 받는 것으로 추정되었다.

Abstract AI-Helper 아이콘AI-Helper

We investigated the distribution characteristics of mussels (Mytilus coruscus) growing in the Geomundo sea area by water depth. The research was also conducted to identify the surrounding benthic organisms. Mussels showed high density and low obesity in low water depths. The lower the density, the h...

주제어

참고문헌 (32)

  1. Bertness MD, SD Gaines and RA Wahle. 1996. Wind-driven settlement patterns in the acorn barnacle Semibalanus balanoides. Mar. Ecol. Prog. Ser. 137:103-116. 

  2. Bohnsack JA. 1979. Photographic quantitative sampling of hard-bottom benthic communities. Bull. Mar. Sci. 29:242-252. 

  3. Butman C. 1987. Larval settlement of soft sediment invertebrates: the spatial scales of pattern explained by active habitat selection and the emerging role of hydrodynamic processes. Oceanogr. Mar. Biol. 25:113-165. 

  4. Choi JW, JY Seo and SH Park. 2011. Recruitment patterns of sessile organisms on the artificial PVC panels in Jangmok Bay, southern coast of Korea. Korean J. Malacol. 27:29-33. 

  5. Crisp DP and PS Meadow. 1962. The chemical bases of gregariousness in cirripedes. Proc. R. Soc. Lond. Ser. B-Biol. Sci. 150:500-520. 

  6. Dauvin JC, G Bellan and D Bellan-Santini. 2010. Benthic indicators: from subjectivity to objectivity-Where is the line. Mar. Pollut. Bull. 60:947-953. 

  7. Fisher H. 1988. Myilus edulis as a quantitative indicator of dissolved cadmium: Final study and synthesis. Mar. Ecol. Prog. Ser. 48:163-174. 

  8. Fowler-Walker MJ and SD Connell. 2007. Habitat heterogeneity as a consequence of substratum-orientation and kelp canopy: Relating interdependent responses to common patterns. J. Exp. Mar. Biol. Ecol. 343:127-137. 

  9. Glasby TM. 1998. Estimating spatial variability in developing assemblages of biota on subtidal hard substrata. Mar. Freshw. Res. 49:429-437. 

  10. Glasby TM and SD Connell. 2001. Orientation and position of substrata have large effects on epibiotic assemblages. Mar. Ecol. Prog. Ser. 214:127-135. 

  11. Goldberg ED. 1986. The mussel watch concept. Environ. Monit. Assess. 7:91-103. 

  12. Grace RV. 1983. Zonation of sublittoral rocky bottom marine life and its changes from the outer to the inner Hauraki Gulf, northeastern New Zealand. Tane 29:97-108. 

  13. Je JG, CI Zhang and SH Lee. 1990. Characteristics of shell morphology and distribution of 3 species belonging to genus Mytilus (Mytilidae: Bivalvia) in Korea. Korean J. Malacol. 6:22-32. 

  14. Je JG, JS Hong and SK Yi. 1988. A study on the fouling organisms in the pearl oyster culture grounds in the southern coast of Korea. Ocean Res. 10:85-105. 

  15. Kwon JN, MJ Jung, DI Kim and MH Son. 2010. Correlation between community structure of herbivore and succession of macro-algal flora in the subtidal area of East coast of Korea. Korean J. Malocol. 26:185-199. 

  16. Lee SH and KW Lee. 1984. Heavy metals in mussels in the Korean coastal waters. J. Oceanol. Soc. Korea 19:111-117. 

  17. Lim HS, JW Choi and MH Son. 2018. Macrozoobenthic community structure in the shallow subtidal soft-bottom around Wando-Doam Bay during summer season. J. Korean Soc. Oceanogr. 23:91-108. 

  18. Lindeman KC, DA McCarthy, KG Holloway-Adkins and DB Snyder. 2009. Ecological functions of nearshore hardbottom habitats in East Florida: A literature synthesis. p. 112. In: Prepared for the Florida Department of Environmental Protection Bureau of Beaches and Coastal Systems. CSA International Inc. Tallahassee, FL. 

  19. Maeng JH, KY Kim, YR Kim, MB Shon, JH Kim and MH Son. 2015. Difference in macrobenthic community structures at thermal effluent discharge areas of two nuclear power plants in Korea. J. Korean Soc. Mar. Environ. Energy 18:157-165. 

  20. Park SH, JY Seo and JW Choi. 2011. Community structure of sessile organisms on PVC plates according to different submerged timings and durations in Jangmok Bay, Korea. Korean J. Malacol. 27:99-105. 

  21. Phillips DJH. 1976. The common mussel Myilus edulis as an indicator of pollution by zinc, cadmium, lead and copper. I. Effects of environmental variables on uptake of metals, Mar. Biol. 38:59-69. 

  22. Ritz DA, R Swain and NG Elliott. 1982. Use of the mussel Mytilus edulis planulatus (Lamarck) in the mornitoring heavy metal levels in seawater. Mar. Freshw. Res. 33:491-506. 

  23. Ruitton S, P Francour and CF Boudouresque. 2000. Relationships between algae, benthic harbivorous invertebrates and fishes in rocky subtidal communities of a temperate sea (Mediterranean). Estuar. Coast. Shelf Sci. 50:217-230. 

  24. Rule MJ and SDA Smith. 2007. Depth-associated patterns in the development of benthic assemblages on artificial substrata deployed on shallow, subtropical reefs. J. Exp. Mar. Biol. Ecol. 345:38-51. 

  25. Scarlato OA. 1981. Bivalve molluscs of temperate latitudes of the western part of the Pacific Ocean. Opred. Faune SSSR 26:1-46. 

  26. Smith F and JD Witman. 1999. Species diversity in subtidal landscapes: maintenance by physical processes and larval recruitment. Ecology 80:51-69. 

  27. Son MH, HJ Kim, CK Kang, IS Hwang, YN Kim, CH Moon, JM Hwang, SJ Han and WH Lee. 2019. Does the availability of various types and quantity of food limit the community structure of the benthos (Mollusks) inhabiting in the hard-bottom subtidal area? J. Korean Soc. Oceanogr. 24:128-138. 

  28. Suchanek TH. 1978. The ecology of Mytilus edulis L. in exposed rocky intertidal communities. J. Exp. Mar. Biol. Ecol. 31:105-120. 

  29. Thorson G. 1966. Some factors influencing the recruitment and establishment of marine benthic communities. Neth. J. Sea Res. 3:267-293. 

  30. Wenner AM. 1987. Crustacean and other invertebrates as indicators of beach pollution. pp. 199-230. In: Marine Organisms as Indicators (Soule DF and GS Kleppel, eds.). Springer-Verlag. New York. 

  31. Yonge CM. 1976. The mussel form and habit. pp. 1-12. In: Marine Mussels: Their Ecology and Physiology (Bayne BL ed.). Cambridge University Press. Cambridge, UK. 

  32. Yoon KT, IS Seo, KB Kim, BM Choi and MH Son. 2009. Community structure of macrobenthic fauna in the Hallyeohaesang National Park from Korea Strait, Korea. Korean J. Environ. Biol. 27:124-133. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

FREE

Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로