$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

엔드 이펙터 타입의 로봇보행훈련이 뇌성마비인의 서기, 보행 기능과 보행속도에 미치는 영향
Effect of an End-effector Type of Robotic Gait Training on Stand Capability, Locomotor Function, and Gait Speed in Individuals with Spastic Cerebral Palsy 원문보기

대한물리의학회지 = Journal of the korean society of physical medicine, v.16 no.3, 2021년, pp.123 - 130  

황종석 (바트리움 재활센터)

Abstract AI-Helper 아이콘AI-Helper

PURPOSE: Robotic gait training is being used increasingly to improve the gross motor performance and gait speed. The present study examined the effectiveness of a novel end-effector type of robotic gait training (RGT) system on standing, walking, running, and jumping functions, as well as the gait s...

주제어

참고문헌 (37)

  1. Rosenbaum P, Paneth N, Leviton A, et al. A report: the definition and classification of cerebral palsy April 2006. Dev Med Child Neurol Suppl. 2007;109(suppl 109):8-14. 

  2. Sanger TD, Chen D, Delgado MR, et al. Definition and classification of negative motor signs in childhood. Pediatrics. 2006;118(5):2159-67. 

  3. Pakula AT, Braun KVN, Yeargin-Allsopp M. Cerebral palsy: classification and epidemiology. Physical Medicine and Rehabilitation Clinics. 2009;20(3):425-52. 

  4. Blondis T. Developmental motor disorders: A neuropsychological perspective. 2004. 

  5. Gage JR. Gait analysis. An essential tool in the treatment of cerebral palsy. Clinical orthopaedics and related research. 1993(288):126-34. 

  6. Houlihan CM. Walking function, pain, and fatigue in adults with cerebral palsy. Dev Med Child Neurol. 2009;51(5):338. 

  7. Opheim A, Jahnsen R, Olsson E, et al. Walking function, pain, and fatigue in adults with cerebral palsy: a 7-year follow-up study. Dev Med Child Neurol. 2009;51(5):381-8. 

  8. Bohm H, Hosl M, Schwameder H, et al. Stiff-knee gait in cerebral palsy: how do patients adapt to uneven ground? Gait Posture. 2014;39(4):1028-33. 

  9. Dodd KJ, Taylor NF, Graham HK. A randomized clinical trial of strength training in young people with cerebral palsy. Dev Med Child Neurol. 2003;45(10):652-7. 

  10. Novacheck TF, Gage JR. Orthopedic management of spasticity in cerebral palsy. Childs Nerv Syst. 2007;23(9):1015-31. 

  11. Goldstein M, Harper DC. Management of cerebral palsy: equinus gait. Dev Med Child Neurol. 2001;43(8):563-9. 

  12. Cahill-Rowley K, Rose J. Etiology of impaired selective motor control: emerging evidence and its implications for research and treatment in cerebral palsy. Dev Med Child Neurol. 2014;56(6):522-8. 

  13. Pirpiris M, Wilkinson AJ, Rodda J, et al. Walking speed in children and young adults with neuromuscular disease: comparison between two assessment methods. Journal of Pediatric Orthopaedics. 2003;23(3):302-7. 

  14. Sutherland DH, Davids JR. Common gait abnormalities of the knee in cerebral palsy. Clinical orthopaedics and related research. 1993(288):139-47. 

  15. Allum JH, Carpenter MG. A speedy solution for balance and gait analysis: angular velocity measured at the centre of body mass. Curr Opin Neurol. 2005;18(1):15-21. 

  16. Damiano DL. Activity, activity, activity: rethinking our physical therapy approach to cerebral palsy. Phys Ther. 2006;86(11):1534-40. 

  17. Garvey MA, Giannetti ML, Alter KE, et al. Cerebral palsy: new approaches to therapy. Curr Neurol Neurosci Rep. 2007;7(2):147-55. 

  18. Eagleton M, Iams A, McDowell J, et al. The effects of strength training on gait in adolescents with cerebral palsy. Pediatr Phys Ther. 2004;16(1):22-30. 

  19. Tsorlakis N, Evaggelinou C, Grouios G, et al. Effect of intensive neurodevelopmental treatment in gross motor function of children with cerebral palsy. Dev Med Child Neurol. 2004;46(11):740-5. 

  20. Schwartz I, Sajin A, Fisher I, et al. The effectiveness of locomotor therapy using robotic-assisted gait training in subacute stroke patients: a randomized controlled trial. Pm r. 2009;1(6):516-23. 

  21. De Santis D, Zenzeri J, Casadio M, et al. Robot-assisted training of the kinesthetic sense: enhancing proprioception after stroke. Front Hum Neurosci. 2014;8:1037. 

  22. Lang CE, MacDonald JR, Gnip C. Counting repetitions: an observational study of outpatient therapy for people with hemiparesis post-stroke. J Neurol Phys Ther. 2007;31(1):3-10. 

  23. Boyd LA, Winstein CJ. Explicit information interferes with implicit motor learning of both continuous and discrete movement tasks after stroke. J Neurol Phys Ther. 2006;30(2):46-57. 

  24. Fine MS, Thoroughman KA. Motor adaptation to single force pulses: sensitive to direction but insensitive to within-movement pulse placement and magnitude. J Neurophysiol. 2006;96(2):710-20. 

  25. Scrivener K, Sherrington C, Schurr K. Exercise dose and mobility outcome in a comprehensive stroke unit: description and prediction from a prospective cohort study. J Rehabil Med. 2012;44(10):824-9. 

  26. Morone G, Paolucci S, Cherubini A, et al. Robot-assisted gait training for stroke patients: current state of the art and perspectives of robotics. Neuropsychiatr Dis Treat. 2017;13:1303. 

  27. Ko J, Kim M. Reliability and Responsiveness of the Gross Motor Function Measure-88 in Children With Cerebral Palsy. Physical therapy. 93-9. 

  28. Kenyon LK. Gross Motor Function Measure (GMFM-66 and GMFM-88) Users' Manual. Physical & Occupational Therapy In Pediatrics. 2014;34(3):341-2. 

  29. Steffen TM, Hacker TA, Mollinger L. Age-and gender-related test performance in community-dwelling elderly people: Six-Minute Walk Test, Berg Balance Scale, Timed Up & Go Test, and gait speeds. Phys Ther. 2002;82(2):128-37. 

  30. Schroeder A, Homburg M, Warken B, et al. Prospective controlled cohort study to evaluate changes of function, activity and participation in patients with bilateral spastic cerebral palsy after Robot-enhanced repetitive treadmill therapy. Eur J Paediatr Neurol. 2014;18(4):502-10. 

  31. Wallard L, Dietrich G, Kerlirzin Y, et al. Robotic-assisted gait training improves walking abilities in diplegic children with cerebral palsy. Eur J Paediatr Neurol. 2017;21(3):557-64. 

  32. Meyer-Heim A, Borggraefe I, Ammann-Reiffer C, et al. Feasibility of robotic-assisted locomotor training in children with central gait impairment. Dev Med Child Neurol. 2007;49(12):900-6. 

  33. Berger A, Horst F, Muller S, et al. Current state and future prospects of EEG and fNIRS in robot-assisted gait rehabilitation: A brief review. Front Hum Neurosci. 2019;13:172. 

  34. Smania N, Bonetti P, Gandolfi M, et al. Improved gait after repetitive locomotor training in children with cerebral palsy. Am J Phys Med Rehabil. 2011;90(2):137-49. 

  35. Bidabe D, Barnes S, Whinnery K. MOVE: Raising expectations for individuals with severe disabilities. Physical Disabilities: Education and Related Services. 2001;19(2):31-48. 

  36. Dias D, Lains J, Pereira A, et al. Can we improve gait skills in chronic hemiplegics? A randomised control trial with gait trainer. Eura Medicophys. 2007;43(4):499. 

  37. Hesse S, Uhlenbrock D. A mechanized gait trainer for restoration of gait. Journal of rehabilitation research and development. 2000;37(6):701-8. 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로