$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

기표의 구현과 수학적 이해: 경과시간을 중심으로
Realization of signifiers and mathematics understanding: Focused on the elapsed time 원문보기

Journal of the Korean Society of Mathematical Education. Series A. The Mathematical Education, v.60 no.3, 2021년, pp.249 - 264  

한채린 (서울등촌초등학교)

초록
AI-Helper 아이콘AI-Helper

이 연구는 사회문화적인 관점에서 경과시간이라는 수학적 대상을 구현하는 기표를 통해 학생들의 경과시간 이해를 탐색하였다. 연구 결과, 학생들은 주어진 기표에 따라 차별화된 방식으로 경과시간 과제를 수행하고 있음이 확인되었고, 개별적으로 구성된 학생들의 경과시간 구현 기표 수형도는 이들이 특히 아날로그 시계 기표에서 경험하는 차별화된 과제 수행을 설명해주었다.

Abstract AI-Helper 아이콘AI-Helper

This article is devoted to investigating young learners' understanding of elapsed time from socio-cultural perspectives. The socio-cultural perspective benefits to access and personalize mathematics learning as how to have a mathematical object to be able to realize signifiers with the help of many ...

주제어

표/그림 (11)

참고문헌 (58)

  1. Acredolo, C. (1989). Assessing children's understanding of time, speed, and distance interrelations. In I. Levin & D. Zakay (Eds.), Time and human cognition: A life-span perspective (pp. 219-257). Amsterdam, Netherlands: Elsevier Science. 

  2. Australian Curriculum, Assessment and Reporting Authority. (2012). Australian Curriculum: Mathematics. Retrieved from http://www.australiancurriculum.edu.au/ 

  3. Buchholtz, N. (2019). Planning and conducting mixed methods studies in mathematics educational research. In G. Kaiser & N. Presmeg (Eds.), Compendium for early career researchers in mathematics education (pp. 131-152). Cham, Switzerland: Springer Nature. 

  4. Burny, E., Valcke, M., & Desoete, A. (2009). Towards an agenda for studying learning and instruction focusing on time-related competencies in children. Educational Studies, 35(5), 481-492. 

  5. Caspi, S., & Sfard, A. (2012). Spontaneous meta-arithmetic as a first step toward school algebra. International Journal of Educational Research, 51-52, 45-65. 

  6. Cho, Y. M., & Lim, S. H. (2010). A study on textbooks of South Korea, Singapore, and Japan focused on the teaching of the time. J ournal of Elementary Mathematics Education in Korea, 14(2), 421-440. 

  7. Cohen, L., Manion, L., & Morrison, K. (2002). Research methods in education. New York, NY: Routledge. 

  8. Creswell, J. W. (2009). Research design: Qualitative, quantitative, and mixed methods approaches (3rd ed.). Thousand Oaks, CA: Sage Publications. 

  9. Crosby, A. W. (1997). The measure of reality: Quantification in Western Europe, 1250-1600. New York, NY: Cambridge University Press. 

  10. Earnest, D. (2015). From number lines to graphs in the coordinate plane: Investigating problem solving across mathematical representations. Cognition and Instruction, 33(1), 46-87. 

  11. Earnest, D. (2017). Clock work: How tools for time mediate problem solving and reveal understanding. Journal for Research in Mathematics Education, 48(2), 191-223. 

  12. Earnest, D. (2021). About time: Syntactically-guided reasoning with analog and digital clocks. Mathematical Thinking and Learning, https://doi.org/10.1080/10986065.2021.1881703 

  13. Earnest, D., Gonzales, A. C., & Plant, A. M. (2018). Time as a measure: Elementary students positioning the hands of an analog clock. Journal of Numerical Cognition, 4(1), 188-214. 

  14. Finnish National Board of Education (2016). National core curriculum for basic education 2014. Helsinki, Finland: Author. 

  15. Fivush, R., & Mandler, J. M. (1985). Developmental changes in the understanding of temporal sequence. Child Development, 56(6), 1437-1446. 

  16. Friedman, W. J., & Laycock, F. (1989). Children's analog and digital clock knowledge. Child Development, 60(2), 357-371. 

  17. Glas, C. A. (2019). Reliability issues in high-stakes educational tests. In B. P. Veldkamp & C. Sluijter (Eds.), Theoretical and practical advances in computer-based educational measurement (pp. 213-230). Cham, Switzerland: Springer International Publishing. 

  18. Greene, J. C., Caracelli, V. J., & Graham, W. F. (1989). Toward a conceptual framework for mixed method evaluation designs. Educational Evaluation and Policy Analysis, 11(3), 255-274. 

  19. Hackenberg, A. J. (2013). The fractional knowledge and algebraic reasoning of students with the first multiplicative concept. The Journal of Mathematical Behavior, 32(3), 538-563. 

  20. Hackenberg, A. J., Norton, A., & Wright, R. J. (2016). Developing fractions knowledge. London, UK: Sage Publications. 

  21. Hackenberg, A. J., & Tillema, E. S. (2009). Students' whole number multiplicative concepts: A critical constructive resource for fraction composition schemes. The Journal of Mathematical Behavior, 28(1), 1-18. 

  22. Han, C. (2020). Making sense of time-telling classroom: Interplay of cognition, instruction, and tools. Unpublished doctoral dissertation, Seoul National University. 

  23. Han, C. (2021). A comparative analysis of the mathematics curriculum on time-related contents: Focusing on Korea, Japan, Australia, the United States, and Finland. Education of Primary School Mathematics, 24(3), 115-134. 

  24. Harner, L. (1982). Talking about the past and the future. In W. J. Friedman (Ed.), The developmental psychology of time (pp. 141-169). New York, NY: Academic Press. 

  25. Izsak, A., Jacobson, E., de Araujo, Z., & Orrill, C. H. (2012). Measuring mathematical knowledge for teaching fractions with drawn quantities. J ournal for Research in Mathematics Education, 43(4), 391-427. 

  26. Kamii, C., & Russell, K. A. (2010). The older of two trees: Young children's development of operational time. Journal for Research in Mathematics Education, 41(1), 6-13. 

  27. Kamii, C., & Russell, K. A. (2012). Elapsed time: Why is it so difficult to teach? Journal for Research in Mathematics Education, 43(3), 296-315. 

  28. Kwon, M. (2019). Second grade elementary school students' understanding of time and elapsed time. Journal of Educational Research in Mathematics, 49(4), 741-760. 

  29. Levin, I. (1989). Principles underlying time measurement: The development of children's constraints on counting time. In I. Levin & D. Zakay (Eds.), Time and human cognition (pp. 145-183). North Holland, Netherlands: Elsevier. 

  30. Long, K., & Kamii, C. (2001). The measurement of time: Children's construction of transitivity, unit iteration, and conservation of speed. School Science and Mathematics, 101(3), 125-132. 

  31. Ministry of Education. (2015). Mathematics curriculum. Sejong, South Korea: Author. 

  32. Morse, J. M., & Niehaus, L. (2009). Mixed method design: Principles and procedures. Walnut Creek, CA: Left Coast Press. 

  33. Nachlieli, T., & Tabach, M. (2012). Growing mathematical objects in the classroom-The case of function. International Journal of Educational Research, 51-52, 10-27. 

  34. Nam, J., & Chang, H. (2016). Analysis on mathematical understanding of elementary school students about time. Journal of Elementary Mathematics Education in Korea, 20(3), 479-498. 

  35. Nam, J., & Chang, H. (2017). A comparative analysis of time in elementary mathematics textbooks. School Mathematics, 19(3), 513-531. 

  36. National Governors Association Center for Best Practices & Council of Chief State School Officers. (2010). Common core state standards for mathematics. Washington, DC: Author. 

  37. Pang, J., Kwon, M., Kim, M., Choi, I., & Jin, S. (2016). An analysis of length and time in the elementary mathematics textbooks: Focused on the instructional components of measurement and key competencies in mathematics. School Mathematics, 18(2), 301-322. 

  38. Park, J. (2016). Communicational approach to study textbook discourse on the derivative. Educational Studies in Mathematics, 91(3), 395-421. 

  39. Piaget, J. (1969). The child's conception of time. New York, NY: Ballantine Books. 

  40. Richards, D. D. (1982). Children's time concepts: Going the distance. In W. J. Friedman (Ed.), The developmental psychology of time (pp. 13-45). New York, NY: Academic Press. 

  41. Russell, K. A., & Kamii, C. (2012). Children's judgments of durations: A modified replication of Piaget's study. School Science and Mathematics, 112(8), 476-482. 

  42. Saxe, G. B. (2012). Cultural development of mathematical ideas: Papua New Guinea studies. Cambridge, UK: Cambridge University Press. 

  43. Sfard, A. (2007). When the rules of discourse change, but nobody tells you: Making sense of mathematics learning from a commognitive standpoint. Journal of the Learning Sciences, 16(4), 565-613. 

  44. Sfard, A. (2008). Thinking as communicating: Human development, the growth of discourses, and mathematizing. New York, NY: Cambridge University Press. 

  45. Sfard, A. (2012). Developing mathematical discourse: Some insights from communicational research. International Journal of Educational Research, 51-52, 1-9. 

  46. Sfard, A. (2017). Ritual for ritual, exploration for exploration. In J. Adler & A. Sfard (Eds.), Research for educational change: Transforming researchers' insights into improvement in mathematics teaching and learning (pp. 41-63). London, UK: Routledge. 

  47. Siegler, R. S., & Richards, D. D. (1979). Development of time, speed, and distance concepts. Developmental psychology, 15(3), 288-298. 

  48. Smith III, J. P., & Barrett, J. E. (2017). Learning and teaching measurement: Coordinating quantity and number. In J. Cai (Ed.), Compendium for research in mathematics education (pp. 355-385). Reston, VA: National Council of Teachers of Mathematics. 

  49. Steffe, L. P. (1992). Schemes of action and operation involving composite units. Learning and Individual Differences, 4(3), 259-309. 

  50. Steffe, L. P. (1994). Children's multiplying schemes. In G. Harel & J. Confrey (Eds.), The development of multiplicative reasoning in the learning of mathematics (pp. 3-39). Albany, NY: SUNY Press. 

  51. Steffe, L. P. (2001). A new hypothesis concerning children's fractional knowledge. The Journal of Mathematical Behavior, 20(3), 267-307. 

  52. Tabach, M., & Nachlieli, T. (2015). Classroom engagement towards using definitions for developing mathematical objects: The case of function. Educational Studies in Mathematics, 90(2), 163-187. 

  53. Vygotsky, L. S. (1978). Mind in society. The development of higher psychological processes. Cambridge, MA: Harvard University Press. 

  54. Vygotsky, L. S. (1986). Thought and language (2nd ed.). Cambridge, MA: MIT Press. 

  55. Weingarden, M., Heyd-Metzuyanim, E., & Nachlieli, T. (2019). The realization tree assessment tool-examining explorative participation in mathematics lessons. The Journal of Mathematical Behavior. https://doi.org/10.1016/j.jmathb.2019.100717. 

  56. Williams, R. F. (2012). Image schemas in clock-reading: Latent errors and emerging expertise. Journal of the Learning Sciences, 21(2), 216-246. 

  57. Yeo, S. (2021). Semiotic mediation through technology: The case of fraction reasoning. The Mathematical Education, 60(1), 1-19. 

  58. 文部科學省. (2017). 小學校學習指導要領解設 算數編. 文部科學省. 

관련 콘텐츠

오픈액세스(OA) 유형

FREE

Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로