$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

전기자동차 배터리 모듈 커버의 3D 프린팅 제작을 위한 GF/PC 복합소재 필라멘트 설계와 3D 프린팅 공정 및 구조 최적화
GF/PC Composite Filament Design & Optimization of 3D Printing Process and Structure for Manufacturing 3D Printed Electric Vehicle Battery Module Cover 원문보기

Composites research = 복합재료, v.34 no.4, 2021년, pp.241 - 248  

유정욱 (Department of Polymer Science and Engineering, Sungkyunkwan University) ,  이진우 (Department of Polymer Science and Engineering, Sungkyunkwan University) ,  김승현 (School of Mechanical Engineering, Sungkyunkwan University) ,  김윤철 (School of Chemical Engineering, Sungkyunkwan University) ,  서종환 (Department of Polymer Science and Engineering, Sungkyunkwan University)

초록
AI-Helper 아이콘AI-Helper

전기자동차 시장이 성장함에 따라 배터리 효율을 증가시키기 위해 차량 경량화 이슈가 대두되고 있다. 이에 전기자동차 배터리 모듈을 보호하는 배터리 모듈 커버를 기존 알루미늄 소재에서 알루미늄 대비 절반 수준의 무게를 가지는 고강도/고내열성 고분자 복합소재로 대체하고자 한다. 또한 복잡한 형상에 대한 제약이 없고, 다품종 소량생산에 유리한 3D 프린팅 기술을 접목하여 기술 변화가 빠른 초기 전기자동차 시장에 대응하고자 한다. 복합소재 역학에 기반하여 압출기를 통해 가공한 단섬유 GF(glass fiber)/PC(polycarbonate) 복합소재 내 유리섬유의 임계길이(critical length)가 453.87 ㎛임을 도출하였고, 사이드 피딩(side feeding) 방식의 가공법을 택함으로써 기존 365.87 ㎛이었던 잔류섬유길이를 향상시킴과 동시에 분산성을 향상시켰다. 이에 30 wt%의 GF가 함유된 GF/PC 복합소재로 인장강도(tensile strength) 135 MPa, 탄성계수(Young's modulus) 7.8 MPa의 최적의 물성을 구현하였다. 또한 3D 프린팅 필라멘트가 상용 필라멘트 규격인 두께 1.75 mm, 표준편차 0.05 mm를 만족하기 위해서 필라멘트 압출 조건(온도, 압출속도)을 최적화하였다. 제작된 필라멘트를 통해 기공률을 최소화하며 강도를 최대화하고, 동시에 생산성 향상을 위해 프린팅 속도를 최대화하는 다중 최적화 문제를 통해 3D 프린팅 공정조건(온도, 프린팅 속도)을 최적화하였고, 이로써 기존 상용화 되어있는 동일 소재 필라멘트 대비 인장강도 11%, 탄성계수 56%가 향상된 결과를 얻었으며, 출력물의 후처리(post-process)를 통해 후처리 전 대비 인장강도 5%, 탄성계수 18%를 추가로 향상시켰다. 끝으로 유한요소해석(finite element analysis, FEA) 기법을 활용하여 전기자동차 배터리 모듈 커버의 시험 규격(ISO-12405)의 Mechanical Shock test의 기준을 만족하도록 배터리 모듈 커버의 구조를 최적화하였고, 이로써 배터리 커버 시험규격을 만족하면서 동시에 알루미늄을 사용했을 때 대비 37%의 경량화를 달성하였다. 해당 연구 결과 및 연구 방법을 활용하여 향후 다양한 분야에 고분자 복합소재 3D 프린팅 기술이 활용될 수 있을 것으로 기대된다.

Abstract AI-Helper 아이콘AI-Helper

As the electric vehicle market grows, there is an issue of light weight vehicles to increase battery efficiency. Therefore, it is going to replace the battery module cover that protects the battery module of electric vehicles with high strength/high heat-resistant polymer composite material which ha...

주제어

표/그림 (19)

참고문헌 (10)

  1. Zhang, X., Yamauchi, M., and Takahashi, J., "Life Cycle Assessment of CFRP in Application of Automobile," Proceedings of the ICCM International Conferences on Composite Materials, Jeju Island, Korea, 2011. 

  2. Walley, S.M., Field, J.E., Blair, P.W., and Milford, A.J., "The Effect of Temperature on the Impact Behaviour of Glass/Polycarbonate Laminates," International Journal of Impact Engineering, Vol. 30, No. 1, 2004, pp. 31-53. 

  3. Kim, N.-S.-R., Lee, E.-S., Kwon, D.-J., Yang, S.B., Lee, J.E., and Yeum, J.H., "Evaluation of Impregnating and Mechanical Properties for Glass Fiber/Polycarbonate Composites Depending on Molecular Weight of Matrix," Composites Research, Vol. 34, No. 1, 2021, pp. 1-7. 

  4. Gunaydin, K., and Turkmen, H.S., "Common FDM 3D printing defects," International Congress on 3D Printing (Additive Manufacturing) Technologies and Digital Industry, 2018. 

  5. Baek, U.-G., Nam, G.B., Roh, J.-S., Park, S.-E., and Roh, J.-U., "A Study on the Improvement of Bending Characteristics of 3D Printed Thermoplastic Structures Reinforced at the Lateral Surface using Continuous Fiber Reinforced Thermosetting Composites," Composites Research, Vol. 34, No. 2, 2021, pp. 136-142. 

  6. Kim, E.S., Kim, Y.C., Park, J., Kim, Y., Kim, S.H., Kim, K.J., Suhr, J.H., Lee, Y.K., Lee, S.H., Kim, D.-S., Kim, S.-H., Yun, J.-H., Park, I.-K., and Nam, J.D., "Mechanical Properties and Flame Retardancy of Surface Modified Magnesium Oxysulfate (5Mg(OH) 2 ·MgSO 4 ·3H 2 O) Whisker for Polypropylene Composites," Journal of Materiomics, Vol. 4, No. 2, 2018, pp. 149-156. 

  7. Semba, T., Kitagawa, K., Ishiaku, U.S., Kotaki, M., and Hamada, H., "Effect of Compounding Procedure on Mechanical Properties and Dispersed Phase Morphology of Poly(lactic acid)/Polycaprolactone Blends Containing Peroxide," Journal of Applied Polymer Science, Vol. 103, No. 2, 2007, pp. 1066-1074. 

  8. Wickramasinghe, S., Truong, D., and Tran, P., "FDM-based 3D Printing of Polymer and Associated Composite: A Review on Mechanical Properties, Defects and Treatments," Polymers, Vol. 12, No. 7, 2020, pp. 1529. 

  9. Panda, B., Paul, S.C., and Tan, M.J., "Anisotropic Mechanical Performance of 3D Printed Fiber Reinforced Sustainable Construction Material," Materials Letters, Vol. 209, No. 2017, pp. 146-149. 

  10. Hambach, M., Rutzen, M., and Volkmer, D., "Properties of 3D-printed Fiber-reinforced Portland Cement Paste," 3D Concrete Printing Technology, Butterworth-Heinemann, 2019, pp. 73-113. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로