$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

글루텐의 표면소수성에 미치는 전해질, pH 및 다시마(Sacchrina japonicas) 알긴산나트륨의 분자량의 영향
Effect of pH, Electrolytes, and Molecular Weights of Sodium Alginate (Prepared from Sacchrina japonicas) on Gluten Surface Hydrophobicity 원문보기

한국수산과학회지 = Korean journal of fisheries and aquatic sciences, v.54 no.4, 2021년, pp.543 - 551  

임영선 (강릉원주대학교 식품영양학과) ,  유병진 (강릉원주대학교 식품영양학과)

Abstract AI-Helper 아이콘AI-Helper

Changes in gluten surface hydrophobicity, which play an important role in the functional characteristics of protein, were measured according to various protein concentrations, pH levels, electrolytes concentrations, and alginate molecular weights using 8-anilino-1-naphthalene sulfonic acid (ANS) as ...

주제어

표/그림 (6)

AI 본문요약
AI-Helper 아이콘 AI-Helper

문제 정의

  • 본 연구는 빵과 noodle의 조직감과 친유성을 향상시키기 위한 기초자료를 얻기 위하여, gluten의 농도, pH, 다가전해질 종류와 농도 그리고 다시마 알긴산나트륨의 농도와 분자량이 밀가루 단백질인 gluten의 표면소수성에 미치는 영향을 탐침물질인 ANS를 이용하여 측정하였으므로 보고하는 바이다.
본문요약 정보가 도움이 되었나요?

참고문헌 (38)

  1. Barak S, Mudgil D and Khatkar BS 2003. Effect of compositional variation of gluten proteins and rheological characteristics of wheat flour on the textural quality of white salted noodles. Int J Food Prop 17, 731-740. https://doi.org/10.1080/10942912.2012.675611. 

  2. Bonomi F, Mora G, Pagani MA and Iametti S. 2004. Probing structural features of water-insoluble proteins by front-face fluorescence. Anal Biochem 329, 104-111. https://doi.org/10.1016/j.ab.2004.02.016. 

  3. Chan MYY, Bell DJ and Dunnill P. 1982. The relationship between the zeta potential and the size of soya protein acid precipitate particle. Biotechnol Bioeng 24, 1897-1900. https://doi.org/10.1002/bit.260240817. 

  4. Damodaran S. 1996. Amino acids, peptides and proteins. In: Food chemistry. Fennema OR ed. Marcel Dekker, New York, NY, U.S.A., 321-429. 

  5. Dickinson E and Stainsby G. 1988. Emulsion stability. In: Advances in food emulaions and foams. Elsevier, Cambridge, MA, U.S.A., 1-44. 

  6. Domenek S, Morel MH, Redi A and Guilbert S. 2003. Rheological investigation of swollen gluten polymer networks, effects of process parameters on cross-link density. Macromol Symp 200, 137-146. https://doi.org/10.1002/masy.200351014. 

  7. Drohan DD, Tziboula A, McNulty D and Horne DS. 1977. Milk protein-carrageenan interactions. Food Hydrocoll 11, 101-107. https://doi.org/10.1016/S0268-005X(97)80016-1. 

  8. Fioramonti SA, Perez AA, Aringoli EE and Rubiolo AC. 2014. Design and characterization of soluble biopolymer complexes produced by electrostatic self-assembly of a whey protein isolate and sodium alginate. Food Hydrocoll 35, 129-136. https://doi.org/10.1016/j.foodhyd.2013.05.001. 

  9. Frederick FS. 1994. Interaction of soy isolate with polysaccharide and its effect on film properties. J Am Oil Chem Soc 71, 1281-1285. https://doi.org/10.1007/BF02540552. 

  10. Galazka VA, Smith D, Ledward DA and Dickinson E. 1999. Complexes of bovine serum albumin with sulphated polysaccharides: effects of pH, ionic strength and high pressure treatment. Food Chem 64, 303-310. https://doi.org/10.1016/S0308-8146(98)00104-6. 

  11. Gennadios A, Brandenburg AH, Weller CL and Testin RF. 1993. Effect of pH on properties of wheat gluten and soy protein isolate films. J Agric Food Chem 41, 1835-1839. https://doi.org/10.1021/jf00035a006. 

  12. Gianibelli MC, Larroque OR, MacRitchie F and Wrigley CW. 2001. Biochemical, genetic and molecular characterization of wheat glutenin and its component subunits. Cereal Chem 78, 635-646. https://doi.org/10.1094/CCHEM.2001.78.6.635. 

  13. Goddard ED. 1986. Polymer-surfactant interaction. Part II. Polymer and surfactant of opposite charge. Colloids Surf 19, 301-329. https://doi.org/10.1016/0166-6622(86)80341-9. 

  14. Han C, Ma M, Li M and Sun Q. 2020. Further interpretation of th underlying causes of the strengthening effect of alkali on gluten and noodle quality: Studies on gluten, gliadin, and glutenin. Food Hydro 103, 1-11. http://doi.org/10.1016/j.foodhyd.2020.105661. 

  15. Harwalker VR and Ma CY. 1989. Effects of medium composition, preheating, and chemical modification upon thermal behavior of oat globulin and β-lactoglobulin. In: Food proteins. Kinsella JF and Soucie WG, eds. The American Oil Soc., Champaign, IL, U.S.A., 210-251. 

  16. Hayakawa S and Nakai S. 1985. Relationships of hydrophobicity and net charge to the solubility of milk and soy proteins. J Food Sci 50, 486-485. https://doi.org/10.1111/j.1365-2621.1985.tb13433.x. 

  17. Kato A and Nakai S. 1980. Hydrophobicity determined by a fluorescence probe method and its correlation with surface properties of proteins. Biochim Biophys Acta 624, 13-20. 

  18. Koning MMG and Visser H. 1992. Protein interactions. An overview. In: Protein interaction. Visser H. ed. VCH Publishers, New York, NY, U.S.A., 1-24. 

  19. Kundu B and Guptasarma P. 2002. Use of a hydrophobic dye to indirectly probe the structural organization and conformational plasticity of molecules in amorphous aggregates of carbonic anhydrase. Biochem Biophys Res Com 293, 572-577. 

  20. Li-Chen E, Nakai S and Wood DF. 1984. Hydrophobicity and solubility of meat proteins and their relationship to emulsifying properties. J Food Sci 49, 345-350. https://doi.org/10.1111/j.1365-2621.1984.tb12418.x. 

  21. Lim YS and Yoo BJ. 2016. Effects of pH, electrolyte concentrations, and alginate molecular weights on surface hydrophobicity of soy protein isolates. J Kor Soc Food Sci Nutr 45, 1285-1292. https://doi.org/10.3746/jkfn.2016.45.9.1285. 

  22. Lim YS and Yoo BJ. 2018. Effects of average molecular weights, their concentrations, Ca ++ and Mg ++ on hydrophobicity of solution of Na-alginates prepared from sea tangle Saccharina japonicus produced in east coast of Korea. Korean J Fish Sci 51, 542-548. https://doi.org/10.5657/KFA.2018.0542. 

  23. Lim YS and You BJ. 2005. Effects of hydrolysis time on the molecular weight distribution of alginates prepared from sea tangle Laminaria japonicas. Korean J Fish Aquat Sci 8, 113-117. https://doi.org/10.5657/fas.2005.8.3.113. 

  24. Liu J, Luo D, Li X, L, Xu B, Zhang X and Liu J. 2016. Effects of inulin on the structure and emulsifying properties of protein components in dough. Food Chem 210, 235-241. https://doi.org/10.1016/j.foodchem.2016.04.001. 

  25. Morris C and Morris GA. 2012. The effect of inulin and fructooligosaccharide supplement on the texture, rheological and sensory properties of bread and their role in weight management. A review. Food Chem 133, 237-248. http://doi.org/10.1016/j.foodchem.2012.01.027. 

  26. Nakai S. 1983. Structure-function relationships of food proteins with an emphasis on the importance of protein hydrophobicity. J Agric Food Chem 31, 676-683. https://doi.org/10.1021/jf00118a001. 

  27. Pearce KN and Kinsella JE. 1978. Emulsifying properties of protein: evaluation of turbidimetric technique. Agric Food Chem 26, 716-723. https://doi.org/10.1021/jf60217a041. 

  28. Pressini D and Sesidoni A. 2009. Effect of soluble dietary fiber addition on rheological and breadmaking properties of wheat doughs. J Cereal Sci 49, 190-201. http://doi.org/10.1016/j.jcs.2008.09.007. 

  29. Ren B, Gao Y, Lu L, Liu X and Tong Z. 2006. Aggregates of alginates binding with surfactants of single and twin alkyl chains in aqueous solutions: Fluorescence and dynamic light scattering studies. Carbohydr Polym 66, 266-273. https://doi.org/10.1016/j.carbpol.2006.03.012. 

  30. Tang Y, Yang Y, Wang Q, Tang Y, Li F and Zhao J. 2019. Combined effect of carboxymethylcellulose and salt on structural properties of wheat gluten proteins. Food Hydro 97. http://doi.org/10.1016/j.foodhyd.2019.105189. 

  31. Thomas WR. 1992. Carrageenan. In: Thickening and gelling agents for food. Imeson A ed. Blackie Academic and Professional, Cambridge, MA, U.S.A., 24-39. 

  32. Uruakpa FO and Arntfield SD. 2006. Surface hydrophobicity of commercial canola proteins mixed with κ-carrageenan or guar gum. Food Chem 95, 255-263. https://doi.org/10.1016/j.foodchem.2005.01.030. 

  33. Wang Y, Gan J, Zhou Y, Cheng Y and Nirasawa S. 2017. Improving solubility and emulsifying property of wheat gluten by deamination with four different acids: Effect of replacement of folded conformation by extended structure. Food Hydro 72, 105-114. https://doi.org/10.1016/j.food-hyd.2017.04.013. 

  34. Winnick FM. 1993. Photophysics of preassociated pyrenes in aqueous polymer solutions and in other organized media. Chemical Rev 93, 587-614. https://doi.org/10.1021/CR00018A001. 

  35. Wolf WJ. 1970. Soybean proteins: Their functional, chemical, and physical properties. J Agric Food Chem 18, 969-976. https://doi.org/10.1021/jf60172a025. 

  36. Wrigley C.1996. Giant proteins with flour power. Nature 381, 738-739. https://doi.org/10.1038/381738a0. 

  37. You BJ, Lim YS, Jeong IH and Lee KH. 1997. Effect of extraction conditions on bile acids binding capacity in vitro of alginate extracted from seatangle (Laminaria spp.). Korean J Fish Aquatic Sci 30, 31-38. 

  38. You BJ and Lim YS. 2003. Effects of extracting and drying method on physical properties of alginates from sea tangle, Laminaria japonica. Korean J Fish Aquatic Sci 36, 340-345. https://doi.org/10.5657/kfas.2003.36.4.340. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로