$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

활성탄을 이용한 톳(Sargassum fusiforme) 자숙농축액 내 무기비소 저감 기술
Removal of Inorganic Arsenic from Steamed Hijiki Sargassum fusiforme Concentrate Using Activated Carbon 원문보기

한국수산과학회지 = Korean journal of fisheries and aquatic sciences, v.54 no.4, 2021년, pp.561 - 567  

강은혜 (국립수산과학원 식품위생가공과) ,  이가정 (국립수산과학원 식품위생가공과) ,  조미라 (국립수산과학원 식품위생가공과) ,  유홍식 (국립수산과학원 식품위생가공과) ,  손광태 (국립수산과학원 식품위생가공과) ,  윤민철 (국립수산과학원 식품위생가공과)

Abstract AI-Helper 아이콘AI-Helper

The edible sargasso seaweed hijiki Sargassum fusiforme is known to have high concentration of arsenic, which is a threat to human health, particularly due to inorganic arsenic. In this study, various methods were used to remove inorganic arsenic from steamed hijiki concentrate. The highest concentra...

주제어

표/그림 (6)

AI 본문요약
AI-Helper 아이콘 AI-Helper

제안 방법

  • 무기비소가 함유된 자숙액은 톳 원초를 초순수로 세척한 후 121℃로 15분 동안 자숙하여 제조하였다. 무기비소 저감실험을 위해 내경 20 mm, 높이 40 cm인 open column에 10 g, 20 g 씩 흡착제를 각각 충진하여 사용하였다. 충진된 column은 100 mL 초순수로 세척한 후, 자숙액 5 mL을 loading하여 10분간 유지하였다.
  • 톳 가공공정과 같은 현장에 적용이 용이하며 경제적인 무기비소 저감기술을 개발하기 위해 다양한 흡착제를 이용하여 무기비소 저감효과를 확인하였다(Fig. 2).

데이터처리

  • 모든 분석 결과는 R 프로그램(http://cran.r-project.org, version 3.6.2) 환경에서 95% 신뢰수준으로 통계 분석하였다. 톳의 무기비소 함량의 유의적인 차이를 확인하기 위해, agricolae package를 이용하여 T-test와 One way ANOVA를 수행하였으며 사후검정은 Duncan’s multiple range test를 수행하였다.
  • 톳의 무기비소 함량의 유의적인 차이를 확인하기 위해, agricolae package를 이용하여 T-test와 One way ANOVA를 수행하였으며 사후검정은 Duncan’s multiple range test를 수행하였다.

이론/모형

  • 무기비소 분석에 대한 유효성 검증은 인증표준물질(certified reference materials, CRM) 7405-a (Hijiki; NMIJ/AIST, Tsu- kuba, Japan)을 이용하여 직선성, 검출한계(limit of detection, LOD), 정량한계(limit of quantitation, LOQ), 회수율, 정확성 그리고 정밀성을 확인하였다. LOD와 LOQ는 저농도(1 µg/kg) 표준 용액의 7회 반복 측정한 값을 이용해 계산하였다.
본문요약 정보가 도움이 되었나요?

참고문헌 (38)

  1. Berg M, Tran HC, Nguyen TC, Pham HV, Schertenleib R and Giger W. 2001. Arsenic contamination of groundwater and drinking water in vietnam: a human health threat. Environ Sci Technol 35, 2621-2626. https://doi.org/10.1021/es010027y. 

  2. CEC (The Commission of the European Communities). 2002. Commission decision of 12 august 2002 implementing council directive 96/23/EC concerning the performance of analytical methods and the interpretation of results (2002/657/EC). Off J Eur Commun L221, 8-36. 

  3. CODEX Alimentarius Commision. 2008. Report of the twentyninth session of the codex committee on methods of analysis and sampling. Retrieved from https://old.fssai.gov.in/Codexindia/PDF/TWENTY%20NINTH%20SESSION2008.pdf on Mar 21, 2021. 

  4. Chang YY, Kim KS, Song KH and Yang JK. 2006. Optimal conditions for As (III) removal by filtration system packed with different ratio of iron-coated sand and manganese-coated sand. J Korean Soc Environ Eng 28, 1186-1191. 

  5. Chen W, Parette R, Zou J, Cannon FS and Dempsey BA. 2007. Arsenic removal by iron-modified activated carbon. Water Res 41, 1851-1858. https://doi.org/10.1016/j.watres.2007.01.052. 

  6. Choi IW, Kim SU, Seo DC, Kang BH, Sohn BK, Rim YS, Heo JS and Cho JS. 2005. Biosorption of heavy metals by biomass of seaweeds, Laminaria species, Ecklonia stolonifera, Gelidium amansii and Undaria pinnatifida. Korean J Environ Agric 24, 370-378. https://doi.org/10.5338/KJEA.2005.24.4.370. 

  7. Choi JM and Choi SD. 2004. Preconcentration and determination of trace copper (II) and lead (II) in aqueous solutions by adsorption on Ca-alginate bead. J Korean Chem Soc 48, 590-598. https://doi.org/10.5012/jkcs.2004.48.6.590. 

  8. Choi SY, Park KU, Lee SJ, Choi DB, Park KU, Kim HJ and Kweon JH. 2016. Operating parameters in electrodialysis membrane processes for removal of arsenic in groundwater. J Korean Soc Water Wastewater 30, 449-457. https://doi.org/10.11001/jksww.2016.30.4.449. 

  9. Gupta VK, Saini VK and Jain N. 2005. Adsorption of As (III) from aqueous solution by iron oxide-coated sand. J Collid Interface Sci 288, 55-60. https://doi.org/10.1016/j.jcis.2005.02.054. 

  10. Hanaoka K, Yosida K, Tamano M, Kuroiwa T, Kaise T and Maeda S. 2001. Arsenic in the prepared edible brown alga hijiki, Hizikia Fusiforme. Appl Organomet Chem 15, 561-565. https://doi.org/10.1002/aoc.195. 

  11. Hirata S, Toshimitsu H and Aihara M. 2006. Determination of arsenic species in marine sample by HPLC-ICP-MS. Anal Sci 22, 39-43. https://doi.org/10.2116/analsci.22.39. 

  12. Huang Y, Ma E and Zhao G. 2015. Thermal and structure analysis on reaction mechanisms during the preparation of activated carbon fibers by KOH activation from liquefied wood-based fibers. Ind Crop Prod 69, 447-455. https://doi.org/10.1016/j.indcrop.2015.03.002. 

  13. Jimenez V, Ramirez-Lucas A, Sanchez P, Valverde JL and Romero A. 2012. Improving hydrogen storage in modified carbon materials. Int J Hydrogen Energy 37, 4144-4160. https://doi.org/10.1016/j.ijhydene.2011.11.106. 

  14. Joseph T, Dubey B and McBean EA. 2015. Human health risk assessment from arsenic exposures in bangladesh. Sci Total Environ 527-528, 552-560. https://doi.org/10.1016/j.scitotenv.2015.05.053. 

  15. Kang K, Kim YK and Park SJ. 2016. Natural zeolite and sand capping treatment for interrupting the release of Cd, Cr, Cu, and Zn from marine contaminated sediment and stabilizing the heavy metals. J Korean Soc Environ Eng 38, 135-143. https://doi.org/10.4491/KSEE.2016.38.3.135. 

  16. Kim DH, Choi YE, Park JS and Kang MS. 2017. Development and application of cation-exchange membranes including chelating resin for efficient heavy-metal ion removal. J Memb 27, 129-137. https://doi.org/10.14579/MEMBRANE_JOURNAL.2017.27.2.129. 

  17. Kuyucak N and Volesky B. 1988. Biosorbents for recovery of metals from industrial solutions. Biotechnol Lett 10, 137-142. https://doi.org/10.1007/BF01024641. 

  18. Lee HY, Yang JS, Choi JY and Lee SM. 2009. Removal of As (III) and As (V) in aqueous phases by Fe and Mn oxides coated granular activated carbon. J Korean Soc Environ Eng 31, 619-626. 

  19. Lee SB, Cui MC, Jang M, Moon DH, Cho YC and Kim JH. 2011. A study of kinetics and adsorption characteristics for removal of arsenate by using coal mine drainage sludge in aqueous phase. J Environ Sci Int 20, 241-249. https://doi.org/10.5322/jes.2011.20.2.241. 

  20. Lee SW, Bae SK, Kwon JH, Na YS, An CD, Yoon YS and Song SK. 2005. Correlations between pore structure of activated carbon and adsorption characteristics of acetone vapor. J Korean Soc Environ Engrs 27, 620-625. 

  21. Masue Y, Loeppert RH and Kramer TA. 2007. Arsenate and arsenite adsorption and desorption behavior on coprecipitated aluminum: Iron hydroxides. Environ Sci Technol 41, 837-842. https://doi.org/10.1021/es061160z. 

  22. MFDS (Ministry of Food and Drug Safety). 2018. Food code. Retrieved from http://www.foodsafetykorea.go.kr/portal/safefoodlife/food/foodRvlv/foodRvlv.do. 

  23. Mondal P, Majumder CB and Mohanty B. 2006. Laboratory based approaches for arsenic remediation from contaminated water: recent developments. J Hazard Mater 137, 464-479. https://doi.org/10.1016/j.jhazmat.2006.02.023. 

  24. Nakagawa K, Namba A, Mukai SR and Tamon H. 2004. Adsorption of phenol and reactive dye from aqueous solution on activated carbons derived from solid wastes. Water Res 38, 1791-1798. https://doi.org/10.1016/j.watres.2004.01.002. 

  25. Narukawa T, Hioki A and Chiba K. 2012. Aqueous extraction of water-soluble inorganic in marine algae for speciation analysis. Anal Sci 28, 773-779. https://doi.org/10.2116/analsci.28.773. 

  26. Nam A, Park JA, Do T, Choi JW, Choi U, Kim KN, Yun ST and Lee S. 2017. Chromium (VI) removal from aqueous solution using acrylic ion exchange fiber. J Korean Soc Environ Eng 39, 112-117. https://doi.org/10.4491/KSEE.2017.39.3.112. 

  27. Nickson R, McArthur J, Burgess W, Ahmed KM, Ravenscroft P and Rahmann M. 1998. Arsenic poisoning of bangladesh groundwater. Nature 395, 338. https://doi.org/10.1038/26387. 

  28. Oh CT, Rhee SS, Igarashi T, Kon HJ, Lee WT and Park JB. 2010. Sorption characteristics of arsenic on furnace slag by adsorption isotherm and kinetic sorption experiments. J Korean Geotech Soc 26, 37-45. 

  29. Oh MC, Jung CH, Oh CK, Song DJ and Kim SH. 1999. The study on the dried Hizikia fusiform production. Cheju Nat'l Univ Res Insti Ind Tech Jour 10, 18-22 

  30. Park SM and Lee MH. 2017. Removal of copper and cadmium in acid mine drainage using ca-alginate beads as biosorbent. Geosci J 21, 373-383. https://doi.org/10.1007/s12303-016-0050-9. 

  31. Reed BE, Vaughan RL and Jiang L. 2000. As (III), As (V), Hg, and Pb removal by Fe-oxide impregnated activated carbon. J Environ Eng 126, 869-873. https://doi.org/10.1061/(ASCE)0733-9372(2000)126:9(869). 

  32. Ryu HS and Kim HS. 2006. Effect of Zingiber officinale and Hizikia fusiforme water extracts on no production in macrophage of mice. Korean J Food and Nutr 19, 327-331. 

  33. Ryu KY, Shim SL, Hwang IM, Jung MS, Jun SN, Seo HY, Park JS, Kim HY, Om AS, Park KS and Kim KS. 2009. Arsenic speciation and risk assessment of Hijiki Hizikia fusiforme by HPLC-ICP-MS. Korean J Food Sci and Technol 41, 1-6. 

  34. Shin WS, Na KR and Kim YK. 2015. Characteristics of stabilization and adsorption of heavy metal (As 3+ , Cr 6+ ) by modified activated carbon. J Navig Port Res 39, 185-192. https://doi.org/10.5394/KINPR.2015.39.3.185. 

  35. US FDA (U.S. Food and Drug Administration). 2001. Guidance for industry: bioanalytical method validation. Food and Drug Administration, Rockville, MD, U.S.A. 

  36. Vaughan RL and Reed BE. 2005. Modeling As (V) removal by a iron oxide impregnated activated carbon using the surface complexation approach. Water Res 39, 1005-1014. https://doi.org/10.1016/j.watres.2004.12.034. 

  37. Yang JK, Chang YY, Lee SI, Choi HJ and Lee SM. 2005. Application of iron-coated sand on the treatment of toxic heavy metals. Water Supply 4, 335-341. https://doi.org/10.2166/ws.2004.0124. 

  38. Yu MR, Yang JK and Chang YY. 2008. As (III) oxidation and phenol adsorption by the activated carbon impregnated with Mn oxide. J Korean Soc Environ Eng 30, 423-429. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로