$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

베이지안 최적화를 통한 저서성 대형무척추동물 종분포모델 개발
Development of benthic macroinvertebrate species distribution models using the Bayesian optimization 원문보기

上下水道學會誌 = Journal of Korean Society of Water and Wastewater, v.35 no.4, 2021년, pp.259 - 275  

고병건 (서울시립대학교 환경공학과) ,  신지훈 (서울시립대학교 환경공학과) ,  차윤경 (서울시립대학교 환경공학과)

Abstract AI-Helper 아이콘AI-Helper

This study explored the usefulness and implications of the Bayesian hyperparameter optimization in developing species distribution models (SDMs). A variety of machine learning (ML) algorithms, namely, support vector machine (SVM), random forest (RF), boosted regression tree (BRT), XGBoost (XGB), and...

주제어

참고문헌 (49)

  1. Allan, J.D., and Flecker, A.S. (1993). Biodiversity conservation in running waters, Biosci., 43(1), 32-43. 

  2. Bergstra, J., Bardenet, R., Bengio, Y., and Kegl, B. (2011). "Algorithms for hyper-parameter optimization", In 25th annual conference on neural information processing systems, Neural Information Processing Systems Foundation, Curran Associates Inc., Granada, Spain. 

  3. Bergstra, J., and Bengio, Y. (2012). Random search for hyper-parameter optimization, J. Mach. Learn. Res., 13(2), 281-305. 

  4. Bergstra, J., Yamins, D., and Cox, D. (2013). "Making a science of model search: Hyperparameter optimization in hundreds of dimensions for vision architectures", In International conference on machine learning, PMLR 28(1), Omnipress, Atlanta, USA. 

  5. Bergstra, J., Komer, B., Eliasmith, C., Yamins, D., and Cox, D.D. (2015). Hyperopt: a python library for model selection and hyperparameter optimization, Comput. Sci. Discov., 8(1), 014008. 

  6. Breiman, L. (2001). Random forests, Mach. Learn., 45(1), 5-32. 

  7. Candelieri, A., Giordani, I., Archetti, F., Barkalov, K., Meyerov, I., Polovinkin, A., Sysoyev, A., and Zolotykh, N. (2019). Tuning hyperparameters of a SVM-based water demand forecasting system through parallel global optimization, Comput. Op. Res., 106, 202-209. 

  8. Carlson, C.J. (2020). Embarcadero: Species distribution modelling with Bayesian additive regression trees in R, Methods Ecol. Evol., 11(7), 850-858. 

  9. Cawley, G.C., and Talbot, N.L. (2007). Preventing over-fitting during model selection via bayesian regularisation of the hyper-parameters, J. Mach. Learn. Res., 8(4), 841-861. 

  10. Chen, Y., Xu, J., Yu, H., Zhen, Z., and Li, D. (2016a). Three-dimensional short-term prediction model of dissolved oxygen content based on PSO-BPANN algorithm coupled with kriging interpolation, Math. Probl. Eng., 6564202. 

  11. Chen, T., and Guestrin, C. (2016b). "Xgboost: A scalable tree boosting system", In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, Association for Computing Machinery, New York, USA. 

  12. Chun, S.P., Jun, Y.C., Kim, H.G., Lee, W.K., Kim, M.C., Chun, S.H., and Jung, S.E. (2017). Analysis and prediction of the spatial distribution of EPT (Ephemeroptera, Plecoptera, and Trichoptera) assemblages in the Han River watershed in Korea, J. Asia Pac. Entomol., 20(2), 613-625. 

  13. Cortes, C., and Vapnik, V. (1995). Support-vector networks, Mach. Learn., 20(3), 273-297. 

  14. Duarte, E., and Wainer, J. (2017). Empirical comparison of cross-validation and internal metrics for tuning SVM hyperparameters, Pattern Recognit. Lett., 88, 6-11. 

  15. Efron, B., and Tibshirani, R.J. (1994). An introduction to the bootstrap, CRC press, Florida. 

  16. Elith, J., Graham, C.H., Anderson, R.P., Dudik, M., Ferrier, S., Guisan, A., Hijmans, R.J., Huettmann, F., Leathwick, J.R., Lehmann, A., Li, J., Lohmann, L.G., Loiselle, B.A., Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y., Overton, J. McC., Peterson, A.T., Phillips, S.J., Richardson, K.S., Scachetti-Pereira, R., Schapire, R.E., Soberon, J., Williams, S., Wisz, M. S. and Zimmermann, N.E. (2006). Novel methods improve prediction of species' distributions from occurrence data, Ecogr., 29(2), 129-151. 

  17. Friedman, J.H. (2001). Greedy function approximation: a gradient boosting machine, Ann. Statist., 29(5), 1189-1232. 

  18. Gobeyn, S., Volk, M., Dominguez-Granda, L., and Goethals, P.L. (2017). Input variable selection with a simple genetic algorithm for conceptual species distribution models: A case study of river pollution in Ecuador, Environ. Model Softw., 92, 269-316. 

  19. Gobeyn, S., Mouton, A.M., Cord, A.F., Kaim, A., Volk, M., and Goethals, P.L. (2019). Evolutionary algorithms for species distribution modelling: A review in the context of machine learning, Ecol. Mod., 392, 179-195. 

  20. Goodfellow, I., Bengio, Y., Courville, A., and Bengio, Y. (2016). Deep learning, Cambridge: MIT press, Cambridge. 

  21. Harris, D.J. (2015). Generating realistic assemblages with a joint species distribution model, Method. Ecol. Evol., 6(4), 465-473. 

  22. Hastie, T., Tibshirani, R., and Friedman, J. (2009). The elements of statistical learning: data mining, inference, and prediction. Springer Science and Business Media, Berlin. 

  23. Huang, J., and Ling, C.X. (2005). Using AUC and accuracy in evaluating learning algorithms, IEEE Trans. Knowl. Data Eng., 17(3), 299-310. 

  24. Hutter, F., Hoos, H.H., and Leyton-Brown, K. (2011). "Sequential model-based optimization for general algorithm configuration", In International conference on learning and intelligent optimization, Springer, Rome, Italy. 

  25. Jones, D.R. (2001). A taxonomy of global optimization methods based on response surfaces, J. Glob. Optim., 21(4), 345-383. 

  26. Kong, D., Park, Y., and Jeon, Y.R. (2018a). Revision of ecological score of benthic macroinvertebrates community in Korea, J. Korean Soc. Water Environ., 34(3), 251-269. 

  27. Kong, D., Son, S.H., Hwang, S.J., Won, D.H, Kim, M.C., Park, J.H., Jeon, T.S., Lee, J.E., Kim, J.H., Kim, J.S., Park, J., Kwak, I.S., Ham, S.A., Jun, Y.C., Park, Y.S., Lee, J.K., Lee, S.W., Park, C.H., Moon, J.S., Kim, J.Y., H.K., Park, S.J., Kwon, Y., Kim, P., and Kim, A.R. (2018b). Development of benthic macroinvertebrates index (BMI) for biological assessment on stream environment, J. Korean Soc. Water Environ., 34(2), 183-201. 

  28. Kwak, I.S., Lee, D.S., Hong, C., and Park, Y.S. (2018). Distribution patterns of benthic macroinvertebrates in streams of Korea, Korean J. Ecol. Environ., 51(1), 60-70. 

  29. Lee, S.W., Hwang, S.J., Lee, J.K., Jung, D.I., Park, Y.J., and Kim, J.T. (2011). Overview and application of the national aquatic ecological monitoring program (NAEMP) in Korea, Ann. Limnol. Int. J. Lim., 47(S1), S3-S14. 

  30. Lee, J.W., Lee, S.W., An, K.J., Hwang, S.J., and Kim, N.Y. (2020). An estimated structural equation model to assess the effects of land use on water quality and benthic macroinvertebrates in streams of the Nam-Han river system, South Korea, Int. J. Environ. Res. Public Health, 17(6), 2116. 

  31. Levesque, J.C. (2018). Bayesian hyperparameter optimization: overfitting, ensembles and conditional spaces, Doctor's Thesis, Universite Laval, Quebec, Canada. 

  32. Liu, W., Liu, W.D., and Gu, J. (2020). Predictive model for water absorption in sublayers using a Joint Distribution Adaption based XGBoost transfer learning method, J. Pet. Sci. Eng., 188, 106937. 

  33. Lu, S., Cai, Z.J., and Zhang, X.B. (2009). "Forecasting agriculture water consumption based on PSO and SVM", In 2009 2nd IEEE International Conference on Computer Science and Information Technology, Piscataway, NJ : IEEE, Beijing, China. 

  34. McCarron, E., and Frydenborg, R. (1997). The Florida bioassessment program: an agent of change, Hum. Ecol. Risk Assess., 3(6), 967-977. 

  35. Merow, C., Smith, M.J., Edwards Jr, T.C., Guisan, A., McMahon, S.M., Normand, S., Thuiller, W., Wuest, R.O. , Zimmermann, N.E., and Elith, J. (2014). What do we gain from simplicity versus complexity in species distribution models?, Ecogeg., 37(12), 1267-1281. 

  36. Min, J.K., and Kong, D.S. (2020). Distribution patterns of benthic macroinvertebrate communities based on multispatial-scale environmental variables in the river systems of Republic of Korea, J. Freshw. Ecol., 35(1), 323-347. 

  37. Mockus, J. (2012). Bayesian approach to global optimization: theory and applications. Springer Science and Business Media, Berlin. 

  38. Munoz-Mas, R., Vezza, P., Alcaraz-Hernandez, J.D., and Martinez-Capel, F. (2016). Risk of invasion predicted with support vector machines: A case study on northern pike (Esox Lucius, L.) and bleak (Alburnus alburnus, L.), Ecol. Modell, 342, 123-134. 

  39. Nieto, P. G., Garcia-Gonzalo, E., Fernandez, J. A., and Muniz, C. D. (2014). Hybrid PSO-SVM-based method for long-term forecasting of turbidity in the Nalon river basin: A case study in Northern Spain, Ecol. Eng., 73, 192-200. 

  40. Olof, S. S. (2018). A comparative study of black-box optimization algorithms for tuning of hyper-parameters in deep neural networks, Master's Thesis, Lulea University of Technology, Lulea, Sweden. 

  41. Pearson, R. G., New York : American Museum of Natural History. (2007). Species' distribution modeling for conservation educators and practitioners, 98210, 1-50 

  42. Probst, P., Wright, M. N., and Boulesteix, A. L. (2019). Hyperparameters and tuning strategies for random forest, Wiley Interdiscip Rev Data Min Knowl Discov, 9(3), e1301. 

  43. Ribeiro, M. T., Singh, S., and Guestrin, C. (2016). ""Why should I trust you?" Explaining the predictions of any classifier", In Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, Association for Computing Machinery, New York, USA. 

  44. Rojas-Dominguez, A., Padierna, L. C., Valadez, J. M. C., Puga-Soberanes, H. J., and Fraire, H. J. (2017). Optimal hyper-parameter tuning of SVM classifiers with application to medical diagnosis, IEEE Access, 6, 7164-7176. 

  45. Schapire, R. E. (1990). The strength of weak learnability, Mach. Learn., 5(2), 197-227. 

  46. Schratz, P., Muenchow, J., Iturritxa, E., Richter, J., and Brenning, A. (2019). Hyperparameter tuning and performance assessment of statistical and machine-learning algorithms using spatial data, Ecol. Model., 406, 109-120. 

  47. Shahriari, B., Swersky, K., Wang, Z., Adams, R. P., and De Freitas, N. (2015). Taking the human out of the loop: A review of Bayesian optimization, IEEE, 104(1), 148-175. 

  48. Thornton, C., Hutter, F., Hoos, H.H., and Leyton-Brown, K. (2013). "Auto-WEKA: Combined selection and hyperparameter optimization of classification algorithms", In Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining, Association for Computing Machinery, Chicago, USA. 

  49. Zhang, Y., Dudgeon, D., Cheng, D., Thoe, W., Fok, L., Wang, Z., and Lee, J.H. (2010). Impacts of land use and water quality on macroinvertebrate communities in the Pearl River drainage basin, China, Hydrobiologia, 652(1), 71-88. 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로