$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

별아교세포 선택적 유전자 치료전달을 위한 PLGA 나노입자 개발
Development of PLGA Nanoparticles for Astrocyte-specific Delivery of Gene Therapy: A Review 원문보기

생명과학회지 = Journal of life science, v.31 no.9, 2021년, pp.849 - 855  

신효정 (충남대학교 해부학교실) ,  이가영 (충남대학교 해부학교실) ,  권기상 (원광보건대학교 임상병리학과) ,  권오유 (충남대학교 해부학교실) ,  김동운 (충남대학교 해부학교실)

초록
AI-Helper 아이콘AI-Helper

최근에는 나노기술이 다양한 분야에 도입되고 활용되면서 신약개발이 가속화되고 있다. 나노입자는 약물의 단일 투여로 장기간 동안 혈중 약물 농도를 유지하고, 병리학적 부위에만 선택적으로 방출되는 장점이 있어 비병리 주위에 대한 부작용을 줄일 수 있다. Poly (D,L-lactic-co-glycolic acid) (PLGA)는 가장 광범위하게 개발된 생분해성 고분자 중 하나이다. PLGA는 다양한 응용분야의 약물전달에 널리 사용된다. 또한 FAD에 의해 약물전달 시스템으로 승인되었으며, 유전자 치료제와 같은 제어방출제형에 널리 적용된다. PLGA 나노입자는 수동 및 능동 표적화 방법을 사용하여 특정 세포 유형에 고효율의 전달 시스템으로 개발되었다. 이러한 PLGA 나노입자를 이용한 약물전달체 개발 후 표적 부위에 선택적으로 약물을 전달하고 질병에 따라 장기간 유효 혈중 농도를 최적화한다. 이 리뷰논문에서 우리는 유전자 치료를 위한 PLGA 나노 물질을 기반으로 하는 성상 세포 선택적 나노입자의 개발을 조사하여 세포 특이적으로 치료결과를 향상시키는 방법에 중점을 두고자 한다.

Abstract AI-Helper 아이콘AI-Helper

Recently, as nanotechnology has been introduced and used in various fields, the development of new drugs has been accelerating. Nanoparticles have maintained blood drug concentration for extended periods of time with a single administration of the drug. The drug can then be selectively released only...

주제어

표/그림 (4)

AI 본문요약
AI-Helper 아이콘 AI-Helper

성능/효과

  • Therefore, studies on the stability of these materials are also being conducted at the same time. As described in this review, control of drug delivery, targeting of nanoparticles, and development of cell-specific nanoparticles have developed at a rapid pace, but there are still only a few drugs that can be directly used in clinical practice. Design and targeting strategies for nanoparticles will need to be more diverse and depend on the differences in diseases, degree of development, and location of the lesion.
  • In this review, possible applications for the use of PLGA-based nanoparticles targeting astrocytes have been described. These examples illustrate the promise of using nanoparticles for novel treatments.

후속연구

  • The development of nanotechnology has led to remarkable developments in drug delivery and bioimaging, and as a result, diagnosis, treatment, and methods of monitoring the progress of the treatment process have been improved, and customized treatments based to the patient’s diagnosis have now become a possibility. It is not possible to accurately predict how effective medical advances will be in the future by understanding the properties of materials and applying them to medicine in the nanotechnology field; however, it is clear that nanomaterials will play a decisive role in more accurate diagnoses and quality treatments in the near future.
본문요약 정보가 도움이 되었나요?

참고문헌 (47)

  1. Al Thaher, Y., Perni, S. and Prokopovich, P. 2017. Nano-carrier based drug delivery systems for sustained antimicrobial agent release from orthopaedic cementous material. Adv. Colloid Interface Sci. 249, 234-247. 

  2. Allen, N. J. and Eroglu, C. 2017. Cell biology of astrocytesynapse interactions. Neuron 96, 697-708. 

  3. Alsehli, M. 2020. Polymeric nanocarriers as stimuli-responsive systems for targeted tumor (cancer) therapy: Recent advances in drug delivery. Saudi Pharm. J. 28, 255-265. 

  4. Aravind, A., Varghese, S. H., Veeranarayanan, S., Mathew, A., Nagaoka, Y., Iwai, S., Fukuda, T., Hasumura, T., Yoshida, Y., Maekawa, T. and Kumar, D. S. 2012. Aptamer-labeled PLGA nanoparticles for targeting cancer cells. Cancer Nanotechnol. 3, 1-12. 

  5. Attia, M. F., Anton, N., Wallyn, J., Omran, Z. and Vandamme, T. F. 2019. An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumour sites. J. Pharm. Pharmacol. 71, 1185-1198. 

  6. Bhowmik, A., Chakravarti, S., Ghosh, A., Shaw, R., Bhandary, S., Bhattacharyya, S., Sen, P. C. and Ghosh, M. K. 2017. Anti-SSTR2 peptide based targeted delivery of potent PLGA encapsulated 3,3'-diindolylmethane nanoparticles through blood brain barrier prevents glioma progression. Oncotarget 8, 65339-65358. 

  7. Chawla, J. S. and Amiji, M. M. 2003. Cellular uptake and concentrations of tamoxifen upon administration in poly (epsilon-caprolactone) nanoparticles. AAPS PharmSci. 5, E3. 

  8. Chang, J., Paillard, A., Passirani, C., Morille, M., Benoit, J. P., Betbeder, D. and Garcion, E. 2012. Transferrin Adsorption onto PLGA Nanoparticles governs their interaction with biological systems from blood circulation to brain cancer cells. Pharm. Res-Dordr. 29, 1495-1505. 

  9. Chen, F., Shi, Y., Zhang, J. and Liu, Q. 2020. Nanoparticlebased drug delivery systems for targeted epigenetics cancer therapy. Curr. Drug Targets 21, 1084-1098. 

  10. Cruz, L. J., van Dijk, T., Vepris, O., Li, T., Schomann, T., Baldazzi, F., Kurita, R., Nakamura, Y., Grosveld, F., Philipsen, S. and Eich, C. 2021. PLGA-nanoparticles for intracellular delivery of the CRISPR-complex to elevate fetal globin expression in erythroid cells. Biomaterials 268, 120580. 

  11. Emerich, D. F. and Thanos, C. G. 2007. Targeted nanoparticle-based drug delivery and diagnosis. J. Drug Target 15, 163-183. 

  12. Fricker, G. 2002. Drug transport across the blood-brain barrier. Ernst Schering Res. Found Workshop, 139-154. 

  13. Grover, A., Hirani, A., Pathak, Y. and Sutariya, V. 2014 Brain-targeted delivery of docetaxel by glutathione-coated nanoparticles for brain cancer. AAPS PharmSciTech. 15, 1562-1568. 

  14. Guo, J., Gao, X., Su, L., Xia, H., Gu, G., Pang, Z., Jiang, X., Yao, L., Chen, J. and Chen, H. 2011. Aptamer-functionalized PEG-PLGA nanoparticles for enhanced anti-glioma drug delivery. Biomaterials 32, 8010-8020. 

  15. Jain, K. K. 2005. Nanotechnology-based drug delivery for cancer. Technol. Cancer Res. Treat 4, 407-416. 

  16. Jawad, Z., Xie, F. and Jiao, L. R. 2015. Applications of nanotechnology in the management of cancer: miniature technology, Great Potential. JAMA Surg. 150, 1184-1185. 

  17. Jeevanandam, J., Barhoum, A., Chan, Y. S., Dufresne, A. and Danquah, M. K. 2018. Review on nanoparticles and nano-structured materials: history, sources, toxicity and regulations. Beilstein J. Nanotechnol. 9, 1050-1074. 

  18. Kim, S. H., Jeong, J. H., Chun, K. W. and Park, T. G. 2005. Target-specific cellular uptake of PLGA nanoparticles coated with poly (L-lysine)-poly (ethylene glycol)-folate conjugate. Langmuir 21, 8852-8857. 

  19. Liu, C. Y., Yang, Y., Ju, W. N., Wang, X. and Zhang, H. L. 2018. Emerging roles of astrocytes in neuro-vascular unit and the tripartite synapse with emphasis on reactive gliosis in the context of alzheimer's disease. Front. Cell Neurosci. 12, 193. 

  20. Liu, Y., Li, K., Liu, B. and Feng, S. S. 2010. A strategy for precision engineering of nanoparticles of biodegradable copolymers for quantitative control of targeted drug delivery. Biomaterials 31, 9145-9155. 

  21. Liu, Y., Zhao, G., Xu, C. F., Luo, Y. L., Lu, Z. D. and Wang, J. 2018. Systemic delivery of CRISPR/Cas9 with PEG-PLGA nanoparticles for chronic myeloid leukemia targeted therapy. Biomater Sci. 6, 1592-1603. 

  22. Longmire, M., Choyke, P. L. and Kobayashi, H. 2008. Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomedicine (Lond) 3, 703-717. 

  23. Makadia, H. K. and Siegel, S. J. 2011. Poly Lactic-co-Glycolic Acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers (Basel) 3, 1377-1397. 

  24. Majewski, P. and Krysinski, P. 2008. Synthesis, surface modifications, and size-sorting of mixed nickel-zinc ferrite colloidal magnetic nanoparticles. Chemistry 14, 7961-7968. 

  25. Marzaioli, V., Aguilar-Pimentel, J. A., Weichenmeier, I., Luxenhofer, G., Wiemann, M., Landsiedel, R., Wohlleben, W., Eiden, S., Mempel, M., Behrendt, H., Schmidt-Weber, C., Gutermuth, J. and Alessandrini, F. 2014. Surface modifications of silica nanoparticles are crucial for their inert versus proinflammatory and immunomodulatory properties. Int. J. Nanomedicine 9, 2815-2832. 

  26. Meyer, R. P., Knoth, R., Schiltz, E. and Volk, B. 2001. Possible function of astrocyte cytochrome P450 in control of xenobiotic phenytoin in the brain: in vitro studies on murine astrocyte primary cultures. Exp. Neurol. 167, 376-384. 

  27. Mitchell, M. J., Billingsley, M. M., Haley, R. M., Wechsler, M. E., Peppas, N. A. and Langer, R. 2021 Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 20, 101-124. 

  28. Moore, T. L., Rodriguez-Lorenzo, L., Hirsch, V., Balog, S., Urban, D., Jud, C., Rothen-Rutishauser, B., Lattuada, M. and Petri-Fink, A. 2015 Nanoparticle colloidal stability in cell culture media and impact on cellular interactions. Chem. Soc. Rev. 44, 6287-6305. 

  29. Oksanen, M., Lehtonen, S., Jaronen, M., Goldsteins, G., Hamalainen, R. H. and Koistinaho, J. 2019 Astrocyte alterations in neurodegenerative pathologies and their modeling in human induced pluripotent stem cell platforms. Cell Mol. Life Sci. 76, 2739-2760. 

  30. Panyam, J., Zhou, W. Z., Prabha, S., Sahoo, S. K. and Labhasetwar, V. 2002 Rapid endo-lysosomal escape of poly(DL-lactide-co-glycolide) nanoparticles: implications for drug and gene delivery. FASEB J. 16, 1217-1226. 

  31. Patra, J. K., Das, G., Fraceto, L. F., Campos, E. V. R., Rodriguez-Torres, M. D. P., Acosta-Torres, L. S., Diaz-Torres, L. A., Grillo, R., Swamy, M. K., Sharma, S., Habtemariam, S. and Shin, H. S. 2018 Nano based drug delivery systems: recent developments and future prospects. J. Nanobiotechnology 16, 71. 

  32. Peng, Y., Chen, L., Ye, S., Kang, Y., Liu, J., Zeng, S. and Yu, L. 2020 Research and development of drug delivery systems based on drug transporter and nano-formulation. Asian J. Pharm. Sci. 15, 220-236. 

  33. Perez-Catalan, N. A., Doe, C. Q. and Ackerman, S. D. 2021 The role of astrocyte-mediated plasticity in neural circuit development and function. Neural. Dev. 16, 1. 

  34. Proulx, J., Joshi, C., Vijayaraghavalu, S., Saraswathy, M., Labhasetwar, V., Ghorpade, A. and Borgmann, K. 2020 Arginine-modified polymers facilitate Poly (Lactide-Co-Glycolide)-based nanoparticle gene delivery to primary human astrocytes. Int. J. Nanomedicine 15, 3639-3647. 

  35. Radford, R. A., Morsch, M., Rayner, S. L., Cole, N. J., Pountney, D. L. and Chung, R. S. 2015 The established and emerging roles of astrocytes and microglia in amyotrophic lateral sclerosis and frontotemporal dementia. Front Cell Neurosci. 9, 414. 

  36. Ramalho, M. J., Sevin, E., Gosselet, F., Lima, J., Coelho, M. A. N., Loureiro, J. A. and Pereira, M. C. 2018 Receptor-mediated PLGA nanoparticles for glioblastoma multiforme treatment. Int. J. Pharm. 545, 84-92. 

  37. Rochat, B. and Audus, K. L. 1999 Drug disposition and targeting. Transport across the blood-brain barrier. Pharm. Biotechnol. 12, 181-200. 

  38. Saini, S., Kumar, S., Choudhary, M., Nitesh. and Budhwar, V. 2018 Microspheres as controlled drug delivery system: an updated review. Int. J. Pharm Sci. Res. 9, 1760-1768. 

  39. Sajid, M. I., Moazzam, M., Kato, S., Yeseom Cho, K. and Tiwari, R. K. 2020 Overcoming barriers for siRNA therapeutics: from bench to bedside. Pharmaceuticals (Basel) 13, 294. 

  40. Senapati, S., Mahanta, A. K., Kumar, S. and Maiti, P. 2018. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct. Target Ther. 3, 7. 

  41. Sofroniew, M. V. 2015 Astrocyte barriers to neurotoxic inflammation. Nat. Rev. Neurosci. 16, 249-263. 

  42. Singha, K., Namgung, R. and Kim, W. J. 2011 Polymers in small-interfering RNA delivery. Nucleic. Acid Ther. 21, 133-147. 

  43. Singh, R. and Lillard, J. W. Jr. 2009 Nanoparticle-based targeted drug delivery. Exp. Mol. Pathol. 86, 215-223. 

  44. Sung, Y. K. and Kim, S. W. 2020 Recent advances in polymeric drug delivery systems. Biomater Res. 24, 12. 

  45. Tiwari, G., Tiwari, R., Sriwastawa, B., Bhati, L., Pandey, S., Pandey, P. and Bannerjee, S. K. 2012 Drug delivery systems: An updated review. Int. J. Pharm. Investig. 2, 2-11. 

  46. Vincent, A. J., Gasperini, R., Foa, L. and Small, D. H. 2010 Astrocytes in Alzheimer's disease: emerging roles in calcium dysregulation and synaptic plasticity. J. Alzheimers Dis. 22, 699-714. 

  47. Yu, X. and Pishko, M. V. 2011 Nanoparticle-based biocompatible and targeted drug delivery: characterization and in vitro studies. Biomacromolecules 12, 3205-3212. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로