$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 주제전문지식이 적합성판정의 일관성에 미치는 영향에 관한 실험적 연구
An Experimental Study on the Effect of Domain Expertise on the Consistency of Relevance Judgements 원문보기

정보관리학회지 = Journal of the Korean society for information management, v.38 no.3, 2021년, pp.1 - 22  

(Department of Library and Information Science, Yonsei University) ,  문성빈 (Department of Library and Information Science, Yonsei University)

초록
AI-Helper 아이콘AI-Helper

본 논문은 주제분야 전문지식이 적합성 판단에 미치는 영향을 온라인 실험을 통해 살펴보고 주제분야 전문지식이 적합성개념의 기반이 될 수 있는 지를 검증해 보려고 하였다. 문헌정보학 전문가 6명, 문헌정보학 석사과정 학생 9명, 비전문가 12명이 실험에 참여해 문헌정보학 분야에 대한 14개 논문초록과 문헌정보학 영역 이외 14개 논문초록의 적합성을 판정을 실시하였다. 적합성 판단의 일관성은 공동 확률 일치성(Joint-Probability Agreement, PA)과 IBM SPSS의 클래스간 상관관계 계수(Interclass Correlation Coefficient, ICC)를 통해 산출되었다. PA를 사용한 경우, 비전문가는 과제나 그룹 구분에 상관없이 높은 일관성이 보였다. ICC 계산에 따르면, 문헌정보학 전문가들과 비교하였을 때, 문헌정보학 석사과정학생들은 비전문가들보다 높은 수준의 일관성을 가지고 있다는 것으로 나타났다. 2개 그룹(석사 및 박사를 통합으로 하는 전문가그룹과 비전문가)으로 구분하였을 때는 문헌정보학분야 과제에서 예상대로 전문가들이 더 높은 수준의 일관성을 보이는 경향을 볼 수 있었다.

Abstract AI-Helper 아이콘AI-Helper

An online experiment was conducted to test the subject-knowledge view of relevance theory in order to find evidence of a conceptual basis for relevance. Six experts in Library and Information Science (LIS), nine Master's students of LIS, and twelve non-experts judged the relevance of 14 abstracts wi...

Keyword

표/그림 (9)

참고문헌 (40)

  1. Bailey, P., Craswell, N., Soboroff, I., Thomas, P., Vries, A.D., & Yilmaz, E. (2008). Relevance assessment: are judges exchangeable and does it matter. Proceedings of the 31st annual International ACM Sigir Conference on Research and Development in Information Retrieval, 667-674. http://doi.org/10.1145/1390334.1390447 

  2. Beck, S., Ruhnke, B., Issleib, M., Daubmann, A., Harendza, S., & Zollner, C. (2016). Analyses of inter-rater reliability between professionals, medical students and trained school children as assessors of basic life support skills. BMC Medical Education, 16(1), 263. http://doi.org/10.1186/s12909-016-0788-9 

  3. Cole, T. J. & Altman, D. G. (2017). Statistics notes: What is a percentage difference? BMJ: British Medical Journal (Online), 358. http://doi.org/10.1136/bmj.j3663 

  4. Crump, M. J. C., McDonnell, J. V., & Gureckis, T. M. (2013). Evaluating amazon's mechanical turk as a tool for experimental behavioral research. PloS One, 8(3), e57410-e57410. http://doi.org/10.1371/journal.pone.0057410 

  5. Dong, P., Loh, M., & Mondry, A. (2005). Relevance similarity: An alternative means to monitor information retrieval systems. Biomedical Digital Libraries, 2(1), 6-6. http://doi.org/10.1186/1742-5581-2-6 

  6. Foskett, D. (1972). A note on the concept of "relevance". Inform. Star. Retr., 8, 77-78. http://doi.org/10.1016/0020-0271(72)90009-5 

  7. Harter, S. (1992). Psychological Relevance and Information Science. Journal of the American Society for Information Science, 43(9), 602-615. http://doi.org/10.1002/(SICI)1097-4571(199210)43:9 3.0.CO;2-Q 

  8. Hjorland, B. & Albrechtsen, H. (1995). Toward a new horizon in information-science - domain-analysis. Journal of the American Society for Information Science, 46(6), 400-425. http://doi.org/10.1002/(SICI)1097-4571(199507)46:6 3.0.CO;2-Y 

  9. Hjorland, B. (2002). Epistemology and the socio-cognitive perspective in information science. Journal of the American Society for Information Science and Technology, 53(4), 257-270. http://doi.org/10.1002/asi.10042 

  10. Hjorland, B. (2010). The foundation of the concept of relevance. Journal of the American Society for Information Science and Technology, 61(2), 217-237. http://doi.org/10.1002/asi.21261 

  11. Huang, M. & Hui-yu, W. (2004). The influence of document presentation order and number of documents judged on users' judgments of relevance. Journal of the American Society for Information Science and Technology, 55(11), 970-979. http://doi.org/10.1002/asi.20047 

  12. Huang, X. & Soergel, D. (2012). Relevance: An improved framework for explicating the notion. Journal of the American Society for Information Science and Technology, 64(1), 18-35. doi:10.1002/asi.22811 

  13. Ingerwesen, P. & Jarvelin, H. (2005) Information retrieval in context: IRiX. ACR SIGIR Forum, 39(2), 31-39. http://doi.org/10.1145/1113343.1113351 

  14. Janes, J. W. (1994). Other people's judgments: A comparison of users' and others' judgments of document relevance, topicality, and utility. Journal of the American Society for Information Science (1986-1998), 45(3), 160. http://doi.org/10.1002/(SICI)1097-4571(199404)45:3 3.0.CO;2-4 

  15. Jiang, J. (2017). Ephemeral Relevance and User Activities in a Search Session. Doctoral dissertation, University of Pittsburg, United States. Available: http://d-scholarship.pitt.edu/30612/ 

  16. Koo, T. K. & Li, M. Y. (2016). A guideline of selecting and reporting intraclass correlation coefficients for reliability research. Journal of Chiropractic Medicine, 15(2), 155-163. http://doi.org10.1016/j.jcm.2016.02.012 

  17. Kwon, H. (2016). On the social epistemological nature of questions: A comparison of knowledge domains' question formulations on the topic of "memory". Doctoral dissertation, Rutgers, United States. http://doi.org/doi:10.7282/T36Q20DB 

  18. Liu, J. & Zhang, X. (2019). The role of domain knowledge in document selection from search results. Journal of the Association for Information Science and Technology, 70(11), 1236-1247. http://doi.org/10.1002/asi.24199 

  19. Merriam-Webster. (n.d.). Relevance. In Merriam-Webster.com Dictionary. Available: https://www.merriam-webster.com/dictionary/relevance 

  20. Mizzaro, S. (1997). Relevance: The whole history. Journal of the American Society for Information Science, 48(9), 810-832. http://doi.org/10.1002/(SICI)1097-4571(199709)48:9 3.0.CO;2-U 

  21. Mizzaro, S. (1998). How many relevances in information retrieval?. Interacting with Computers, 10(3), 303-320. http://doi.org/10.1016/S0953-5438(98)00012-5 

  22. Nweke, W. C., Perkins, T. P., & Afolabi, C. Y. (2019). Reliability analysis of complementary assessment tools for measuring teacher candidate dispositions. Georgia Educational Researcher, 16(2), Article 2. http://doi.org/10.20429/ger.2019.160202 

  23. Quarfoot, D. & Levine, R. (2016). How robust are multirater interrater reliability indices to changes in frequency distribution?. The American Statistician, 70(4), 373-384. http://doi.org/10.1080/00031305.2016.1141708 

  24. Rees, A. & Schultz, D. G. (1967). A Field Experimental Approach to the Study of Relevance Assessments in Relation to Document Searching. Final Report to the National Science Foundation. Volume II, Appendices. Springfield, VA: Clearinghouse for Federal Scientific and Technical Information. 

  25. Ruthven, I. (2014). Relevance behaviour in TREC. Journal of Documentation, 70(6), 1098-1117. http://doi.org/10.1108/JD-02-2014-0031 

  26. Saracevic, T. (1975). Relevance: A review of and a framework for the thinking on the notion in information science. Journal of the American Society for Information Science, 26(6), 321-343. http://doi.org/10.1002/asi.4630260604 

  27. Saracevic, T. (1997). The stratified model of information retrieval interaction: Extension and applications. Proceedings of the American Society for Information Science, 34, 313-327. Available: https://www.researchgate.net/publication/333293923_The_stratified_model_of_information_retrieval_interaction_Extension_and_applications 

  28. Saracevic, T. (2007). Relevance: A review of the literature and a framework for thinking on the notion in information science. Part II: nature and manifestations of relevance. Journal of the American Society for Information Science and Technology, 58(13), 1915-1933. http://doi.org/10.1002/asi.20682 

  29. Saracevic, T. (2017). The Notion of Relevance in Information Science: Everybody knows what relevance is. But, what is it really? San Rafael, CA: Morgan and Claypool Publishers. 

  30. Spink, A. & Greisdorf. H. (2001). Regions and levels: measuring and mapping users' relevance judgments. Journal of the American Society for Information Science and Technology, 52(2), 161-173. http://doi.org/10.1002/1097-4571(2000)9999:99993.0.CO;2-L 

  31. Talja, S. & Maula, H. (2003). Reasons for the use and non-use of electronic journals and databases: A domain analytic study in four scholarly disciplines. Journal of Documentation, 59(6), 673. http://doi.org/10.1108/00220410310506312 

  32. Tamine, L. & Chouquet, C. (2017). On the impact of domain expertise on query formulation, relevance assessment and retrieval performance in clinical settings. Information Processing and Management, 53(2), 332-350. http://doi.org/10.1016/j.ipm.2016.11.004 

  33. Tang, R., Shaw, W. M., & Vevea, J. L. (1999). Towards the identification of the optimal number of relevance categories. Journal of the American Society for Information Science, 50(3), 254-264. http://doi.org/10.1002/(SICI)1097-4571(1999)50:3 3.0.CO;2-Y 

  34. Vakkari, P. & Sormunen, E. (2004). The influence of relevance levels on the effectiveness of interactive information retrieval. Journal of the American Society for Information Science and Technology, 55(11), 963-969. http://doi.org10.1002/asi.20046 

  35. Van der Veer Martens, B. & Van Fleet, C. (2012). Opening the black box of "relevance work": A domain analysis. Journal of the American Society for Information Science and Technology, 63(5), 936-947. http://doi/org10.1002/asi.21699 

  36. Van Rijsbergen, C. J. (1986). A new theoretical framework for information retrieval. ACM SIGIR Forum, 21(1-2), 23-29. http://doi.org/10.1145/3130348.3130354 

  37. Voorhees, E. M. & Harman, D. K. (Eds.). (2005). TREC: Experiment and evaluation in information retrieval. Cambridge, MA: MIT Press. 

  38. White, R., Dumais, S., & Teevan, J. (2009). Characterizing the influence of domain expertise on web search behavior. Proceedings of the Second ACM International Conference on Web Search and Data Mining, 132-141. http://doi.org/10.1145/1498759.1498819 

  39. Zhitomirsky-Geffet, M., Bar-Ilan, J., & Levene, M. (2017). Analysis of change in users' assessment of search results over time. Journal of the Association for Information Science and Technology, 68(5), 1137-1148. http://doi.org/10.1002/asi.23745 

  40. Zhitomirsky-Geffet, M., Bar-Ilan, J., & Levene, M. (2018). Categorical relevance judgment. Journal of the Association for Information Science and Technology, 69(9), 1084-1094. http://doi.org/10.1002/asi.24035 

저자의 다른 논문 :

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로