최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기한국물환경학회지 = Journal of Korean Society on Water Environment, v.37 no.5, 2021년, pp.335 - 343
박정수 (국립한밭대학교 건설환경공학과)
Water quality prediction is essential for the proper management of water supply systems. Increased suspended sediment concentration (SSC) has various effects on water supply systems such as increased treatment cost and consequently, there have been various efforts to develop a model for predicting S...
Ahmad, A. and Dey, L. (2007). A k-mean clustering algorithm for mixed numeric and categorical data, Data & Knowledge Engineering, 63, 503-527.
Ayub, J., Ahmad, J., Muhammad, J., Aziz, L., Ayub, S., Akram, U., and Basit, I. (2016). Glaucoma detection through optic disc and cup segmentation using k-mean clustering, 2016 International Conference on Computing, Electronic and Electrical Engineering (ICE Cube), 143-147.
Bennett, N. D., Croke, B. F., Guariso, G., Guillaume, J. H., Hamilton, S. H., Jakeman, A. J., Marsili-Libelli, S., Newham, L. T., Norton, J. P., and Perrin, C. (2013). Characterising performance of environmental models, Environmental Modelling & Software, 40, 1-20.
Chen, T. and Guestrin, C. (2016). Xgboost: A scalable tree boosting system, Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD '16), Association for Computing Machinery, 785-794.
Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine, Annals of statistics, 29(5), 1189-1232.
Gray, A. B., Pasternack, G. B., Watson, E. B., Goni, M. A., Hatten, J. A., and Warrick, J. A. (2016). Conversion to drip irrigated agriculture may offset historic anthropogenic and wildfire contributions to sediment production, Science of the Total Environment, 556, 219-230.
Gray, A. B., Pasternack, G. B., Watson, E. B., Warrick, J. A., and Goni, M. A. (2015). The effect of El Nino Southern Oscillation cycles on the decadal scale suspended sediment behavior of a coastal dry-summer subtropical catchment, Earth Surface Processes and Landforms, 40, 272-284.
Haghiabi, A. H., Nasrolahi, A. H., and Parsaie, A. (2018). Water quality prediction using machine learning methods, Water Quality Research Journal, 53, 3-13.
Hicks, D. M., Gomez, B., and Trustrum, N. A. (2000). Erosion thresholds and suspended sediment yields, Waipaoa river basin, New Zealand, Water Resources Research, 36, 1129-1142.
Hollister, J. W., Milstead, W. B., and Kreakie, B. J. (2016). Modeling lake trophic state: A random forest approach, Ecosphere, 7, e01321.
Li, L., Rong, S., Wang, R., and Yu, S. (2021). Recent advances in artificial intelligence and machine learning for nonlinear relationship analysis and process control in drinking water treatment: A review, Chemical Engineering Journal, 405, 126673.
Lin, W., Sung, S., Chen, L., Chung, H., Wang, C., Wu, R., Lee, D., Huang, C., Juang, R., and Peng, X. (2004). Treating high-turbidity water using full-scale floc blanket clarifiers, Journal of Environmental Engineering, 130(12), 1481-1487.
Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., and Veith, T. L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations, Transactions of the American Society of Agricultural and Biological Engineers, 50(3), 885-900.
Muhammad, S. Y., Makhtar, M., Rozaimee, A., Aziz, A. A., and Jamal, A. A. (2015). Classification model for water quality using machine learning techniques, International Journal of software engineering and its applications, 9, 45-52.
Packman, A. I. and MacKay, J. S. (2003). Interplay of stream-subsurface exchange, clay particle deposition, and streambed evolution, Water Resources Research, 39(4), 1097.
Park, J. and Hunt, J. R. (2017). Coupling fine particle and bedload transport in gravel-bedded streams, Journal of Hydrology, 552, 532-543.
Park, R. K. (2018). An empirical comparison and verification study on the containerports clustering measurement using k-means and hierarchical clustering (average linkage method Using Cross-Efficiency Metrics, and Ward Method) and Mixed Models, Journal of Korea Port Economic Association, 34, 17-52. [Korean Literature]
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., and Dubourg, V. (2011). Scikit-learn: Machine learning in Python, Journal of Machine Learning Research, 12, 2825-2830.
Shin, Y., Kim, T., Hong, S., Lee, S., Lee, E., Hong, S., Lee, C., Kim, T., Park, M. S., and Park, J. (2020). Prediction of chlorophyll-a concentrations in the Nakdong river using machine learning methods, Water, 12, 1822.
Singer, M. B., Aalto, R., James, L. A., Kilham, N. E., Higson, J. L., and Ghoshal, S. (2013). Enduring legacy of a toxic fan via episodic redistribution of California gold mining debris, Proceedings of the National Academy of Sciences, 110, 18436-18441.
Song, J. (2017). K-means cluster analysis for missing data, Journal of Korean Data Analysis Society, 19, 689-697. [Korean Literature]
Stevenson, M. and Bravo, C. (2019). Advanced turbidity prediction for operational water supply planning, Decision Support Systems, 119, 72-84.
Uddameri, V., Silva, A. L. B., Singaraju, S., Mohammadi, G., and Hernandez, E. A. (2020). Tree-based modeling methods to predict nitrate exceedances in the Ogallala aquifer in Texas, Water, 12, 1023.
United States Geological Survey (USGS). (2009). USGS(United States Geological Survey) Water-Data Report 2009, 11482500 Redwood Creek at Orick, CA.
United States Geological Survey (USGS). (2014). National Water Information System (NWIS). https://waterdata.usgs.gov/nwis (accessed Jun. 2014).
Walling, D. (1977). Assessing the accuracy of suspended sediment rating curves for a small basin, Water Resources Research, 13(3), 531-538.
Wang, Y., Chen, J., Cai, H., Yu, Q., and Zhou, Z. (2021). Predicting water turbidity in a macro-tidal coastal bay using machine learning approaches, Estuarine, Coastal and Shelf Science, 252, 107276.
Warrick, J. A. (2015). Trend analyses with river sediment rating curves, Hydrological processes, 29(6), 936-949.
Warrick, J. A., Madej, M. A., Goni, M., and Wheatcroft, R. (2013). Trends in the suspended-sediment yields of coastal rivers of northern California, 1955-2010, Journal of Hydrology, 489, 108-123.
Zhang, D., Qian, L., Mao, B., Huang, C., Huang, B., and Si, Y. (2018). A data-driven design for fault detection of wind turbines using random forests and XGboost, IEEE Access, 6, 21020-21031.
Zhang, Y., Bouadi, T., and Martin, A. (2018). An empirical study to determine the optimal k in Ek-NNclus method, 5th International Conference on Belief Functions (BELIEF2018), 260-268.
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
오픈액세스 학술지에 출판된 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.