$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 입력자료 군집화에 따른 앙상블 머신러닝 모형의 수질예측 특성 연구
The Effect of Input Variables Clustering on the Characteristics of Ensemble Machine Learning Model for Water Quality Prediction 원문보기

한국물환경학회지 = Journal of Korean Society on Water Environment, v.37 no.5, 2021년, pp.335 - 343  

박정수 (국립한밭대학교 건설환경공학과)

Abstract AI-Helper 아이콘AI-Helper

Water quality prediction is essential for the proper management of water supply systems. Increased suspended sediment concentration (SSC) has various effects on water supply systems such as increased treatment cost and consequently, there have been various efforts to develop a model for predicting S...

Keyword

표/그림 (9)

참고문헌 (34)

  1. Ahmad, A. and Dey, L. (2007). A k-mean clustering algorithm for mixed numeric and categorical data, Data & Knowledge Engineering, 63, 503-527. 

  2. Ayub, J., Ahmad, J., Muhammad, J., Aziz, L., Ayub, S., Akram, U., and Basit, I. (2016). Glaucoma detection through optic disc and cup segmentation using k-mean clustering, 2016 International Conference on Computing, Electronic and Electrical Engineering (ICE Cube), 143-147. 

  3. Bennett, N. D., Croke, B. F., Guariso, G., Guillaume, J. H., Hamilton, S. H., Jakeman, A. J., Marsili-Libelli, S., Newham, L. T., Norton, J. P., and Perrin, C. (2013). Characterising performance of environmental models, Environmental Modelling & Software, 40, 1-20. 

  4. Chen, T. and Guestrin, C. (2016). Xgboost: A scalable tree boosting system, Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD '16), Association for Computing Machinery, 785-794. 

  5. Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine, Annals of statistics, 29(5), 1189-1232. 

  6. Gray, A. B., Pasternack, G. B., Watson, E. B., Goni, M. A., Hatten, J. A., and Warrick, J. A. (2016). Conversion to drip irrigated agriculture may offset historic anthropogenic and wildfire contributions to sediment production, Science of the Total Environment, 556, 219-230. 

  7. Gray, A. B., Pasternack, G. B., Watson, E. B., Warrick, J. A., and Goni, M. A. (2015). The effect of El Nino Southern Oscillation cycles on the decadal scale suspended sediment behavior of a coastal dry-summer subtropical catchment, Earth Surface Processes and Landforms, 40, 272-284. 

  8. Haghiabi, A. H., Nasrolahi, A. H., and Parsaie, A. (2018). Water quality prediction using machine learning methods, Water Quality Research Journal, 53, 3-13. 

  9. Hicks, D. M., Gomez, B., and Trustrum, N. A. (2000). Erosion thresholds and suspended sediment yields, Waipaoa river basin, New Zealand, Water Resources Research, 36, 1129-1142. 

  10. Hollister, J. W., Milstead, W. B., and Kreakie, B. J. (2016). Modeling lake trophic state: A random forest approach, Ecosphere, 7, e01321. 

  11. Li, L., Rong, S., Wang, R., and Yu, S. (2021). Recent advances in artificial intelligence and machine learning for nonlinear relationship analysis and process control in drinking water treatment: A review, Chemical Engineering Journal, 405, 126673. 

  12. Lin, W., Sung, S., Chen, L., Chung, H., Wang, C., Wu, R., Lee, D., Huang, C., Juang, R., and Peng, X. (2004). Treating high-turbidity water using full-scale floc blanket clarifiers, Journal of Environmental Engineering, 130(12), 1481-1487. 

  13. Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., and Veith, T. L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations, Transactions of the American Society of Agricultural and Biological Engineers, 50(3), 885-900. 

  14. Muhammad, S. Y., Makhtar, M., Rozaimee, A., Aziz, A. A., and Jamal, A. A. (2015). Classification model for water quality using machine learning techniques, International Journal of software engineering and its applications, 9, 45-52. 

  15. Packman, A. I. and MacKay, J. S. (2003). Interplay of stream-subsurface exchange, clay particle deposition, and streambed evolution, Water Resources Research, 39(4), 1097. 

  16. Park, J. (2021). Comparative characteristic of ensemble machine learning and deep learning models for turbidity prediction in a river, Journal of Korean Society of Water and Wastewater, 35, 83-91. [Korean Literature] 

  17. Park, J. and Hunt, J. R. (2017). Coupling fine particle and bedload transport in gravel-bedded streams, Journal of Hydrology, 552, 532-543. 

  18. Park, J. and Lee, H. (2020). Prediction of high turbidity in rivers using LSTM algorithm, Journal of Korean Society of Water and Wastewater, 34, 35-43. [Korean Literature] 

  19. Park, R. K. (2018). An empirical comparison and verification study on the containerports clustering measurement using k-means and hierarchical clustering (average linkage method Using Cross-Efficiency Metrics, and Ward Method) and Mixed Models, Journal of Korea Port Economic Association, 34, 17-52. [Korean Literature] 

  20. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., and Dubourg, V. (2011). Scikit-learn: Machine learning in Python, Journal of Machine Learning Research, 12, 2825-2830. 

  21. Shin, Y., Kim, T., Hong, S., Lee, S., Lee, E., Hong, S., Lee, C., Kim, T., Park, M. S., and Park, J. (2020). Prediction of chlorophyll-a concentrations in the Nakdong river using machine learning methods, Water, 12, 1822. 

  22. Singer, M. B., Aalto, R., James, L. A., Kilham, N. E., Higson, J. L., and Ghoshal, S. (2013). Enduring legacy of a toxic fan via episodic redistribution of California gold mining debris, Proceedings of the National Academy of Sciences, 110, 18436-18441. 

  23. Song, J. (2017). K-means cluster analysis for missing data, Journal of Korean Data Analysis Society, 19, 689-697. [Korean Literature] 

  24. Stevenson, M. and Bravo, C. (2019). Advanced turbidity prediction for operational water supply planning, Decision Support Systems, 119, 72-84. 

  25. Sutton, C. D. (2005). Classification and regression trees, bagging, and boosting, Handbook of statistics, 24, 303-329. 

  26. Uddameri, V., Silva, A. L. B., Singaraju, S., Mohammadi, G., and Hernandez, E. A. (2020). Tree-based modeling methods to predict nitrate exceedances in the Ogallala aquifer in Texas, Water, 12, 1023. 

  27. United States Geological Survey (USGS). (2009). USGS(United States Geological Survey) Water-Data Report 2009, 11482500 Redwood Creek at Orick, CA. 

  28. United States Geological Survey (USGS). (2014). National Water Information System (NWIS). https://waterdata.usgs.gov/nwis (accessed Jun. 2014). 

  29. Walling, D. (1977). Assessing the accuracy of suspended sediment rating curves for a small basin, Water Resources Research, 13(3), 531-538. 

  30. Wang, Y., Chen, J., Cai, H., Yu, Q., and Zhou, Z. (2021). Predicting water turbidity in a macro-tidal coastal bay using machine learning approaches, Estuarine, Coastal and Shelf Science, 252, 107276. 

  31. Warrick, J. A. (2015). Trend analyses with river sediment rating curves, Hydrological processes, 29(6), 936-949. 

  32. Warrick, J. A., Madej, M. A., Goni, M., and Wheatcroft, R. (2013). Trends in the suspended-sediment yields of coastal rivers of northern California, 1955-2010, Journal of Hydrology, 489, 108-123. 

  33. Zhang, D., Qian, L., Mao, B., Huang, C., Huang, B., and Si, Y. (2018). A data-driven design for fault detection of wind turbines using random forests and XGboost, IEEE Access, 6, 21020-21031. 

  34. Zhang, Y., Bouadi, T., and Martin, A. (2018). An empirical study to determine the optimal k in Ek-NNclus method, 5th International Conference on Belief Functions (BELIEF2018), 260-268. 

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로