$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

초고강도급 자동차용 강재 내 ε-carbide (Fe2.4C)가 부식 및 수소확산거동에 미치는 영향
Effect of ε-carbide (Fe2.4C) on Corrosion and Hydrogen Diffusion Behaviors of Automotive Ultrahigh-Strength Steel Sheet 원문보기

Corrosion science and technology, v.20 no.5, 2021년, pp.295 - 307  

박진성 (순천대학교 신소재공학과) ,  윤덕빈 (순천대학교 신소재공학과) ,  성환구 (포스코 기술연구원) ,  김성진 (순천대학교 신소재공학과)

Abstract AI-Helper 아이콘AI-Helper

Effects of ε-carbide (Fe2.4C) on corrosion and hydrogen diffusion behaviors of ultra-strong steel sheets for automotive application were investigated using a number of experimental and analytical methods. Results of this study showed that the type of iron carbide precipitated during tempering...

주제어

표/그림 (16)

참고문헌 (37)

  1. S. Brauser, L. A. Pepke, G. Weber, and M. Rethmeier, Deformation behavior of spot-welded high strength steels for automotive application, Materials Science Engineering: A, 527, 7099 (2010). Doi: https://doi.org/10.1016/j.msea.2010.07.091 

  2. S. L. Gibbons, R. A. Abrahams, M. W. Vaughan, R. E. Barber, R. C. Harris, R. Arroyave, and I. Karaman, Microstructural refinement in an ultra-high strength martensitic steel via equal channel angular pressing, Materials Science Engineering: A, 725, 57 (2018). Doi: https://doi.org/10.1016/j.msea.2018.04.086 

  3. E. H. Hwang, H. G. Seong, and S. J. Kim, Effect of carbon contents on corrosion and hydrogen diffusion behaviors of ultra-strong steels for automotive applications, Korean Journal of Metals and Materials, 56, 570 (2018). Doi: https://doi.org/10.3365/KJMM.2018.56.8.570 

  4. J. S. Park, E. H. Hwang, M. J. Lee, and S. J. Kim, Effect of tempering condition on hydrogen diffusion behavior of martensitic high-strength steel, Corrosion Science and Technology, 17, 242 (2018). Doi: https://doi.org/10.14773/cst.2018.17.5.242 

  5. M. M. Islam, C. Zou, A. C. T. V. Duin, and S. Raman, Interaction of hydrogen with the iron and iron carbide interfaces: a ReaxFF molecular dynamics study, Physical Chemistry Chemical Physics, 18, 761 (2015). Doi: https://doi.org/10.1039/c5cp06108c 

  6. S. V. Brahimi, S. Yue, and K. R. Sriraman, Alloy and composition dependence of hydrogen embrittlement susceptibility in high-strength steel fasteners, Philosophical Transactions A, 375, 2098 (2017). Doi: https://doi.org/10.1098/rsta.2016.0407 

  7. S. Thomas, N. Ott, R. F. Schaller, J. A. Yuwono, P. Volovitch, G. Sundararajan, N. V. Medhekar, K. Ogle, J. R. Scully, and N. Birbilis, The effect of absorbed hydrogen on the dissolution of steel, Heliyon, 3, e00209 (2017). Doi: http://dx.doi.org/10.1016/j.heliyon.-2016.e00209 

  8. D. Rudomilova, T. Prosek, I. Traxler, J. Faderl, G. Luckeneder, G. S. Aichhorn, and A. Muhr, Critical assessment of the effect of atmospheric corrosion induced hydrogen on mechanical properties of advanced high strength steel, Metals, 11, 44 (2020). Doi: https://doi.org/10.3390/met11010044 

  9. H. Xu, X. Xia, L. Hua, Y. Sun, and Y. Dai, Evaluation of hydrogen embrittlement susceptibility of temper embrittled 2.24Cr-1Mo steel by SSRT method, Engineering Failure Analysis, 19, 43 (2012). Doi: https://doi.org/10.1016/j.engfailanal.2011.08.008 

  10. W. S. Yang, J. W. Seo, and S. H. Ahn, A study on hydrogen embrittlement research on automotive steel sheets, Corrosion Science and Technology, 17, 193 (2018). Doi: http://dx.doi.org/10.14773/cst.2018.17.4.193 

  11. J. S. Park, H. J. Lee, and S. J. Kim, Electrochemical corrosion and hydrogen diffusion behaviors of Zn and Al coated hot-press forming steel sheets in chloride containing environments, Korean Journal of Materials Research, 28, 286 (2018). Doi: http://dx.doi.org/-10.3740/MRSK.2018.28.5.286 

  12. S. A. J. Forsik, P. R. D. D. Castillo, Encyclopedia of Iron, Steel, and Their Alloys, 1st ed., pp. 2169 - 2181, Taylor & Francis (2016). Doi: https://doi.org/10.1081/E-EISA120052026 

  13. S. W. Thompson, A two-tilt analysis of electron diffraction patterns from transition-iron-carbide precipitates formed during tempering of 4340 steel, Metallography, Microstructure, and Analysis, 5, 367 (2016). Doi: https://doi.org/10.1007/s13632-016-0302-0 

  14. C. Wagner and W. Traud, The original formulation of the mixed potential concept and the basis theory of corrosion of a pure metal, Zeitschrift Fur Elektrochemie und Angewandte Physikalische Chemie, 44, 391 (1938). Doi: https://doi.org/10.1002/bbpc.19380440702 

  15. M. Stren and A. L. Geary, Electrochemical Polarization: I. A Theoretical Analysis of the Shape of Polarization Curves, Journal of Electrochemical Society, 104, 56 (1957). Doi: https://doi.org/10.1149/1.2428496 

  16. ISO 17081, Method of Measurement of Hydrogen Permeation and Determination of Hydrogen Uptake and Transport in Metals by an Electrochemical Technique, Switzerland: ISO Standard (2004). 

  17. M. Hunkel, J. Dong, J. Epp, D. Kaiser, S. Dietrich, V. Schulze, A. Rajaei, B. Hallstedt, and C. Broeckmann, Comparative study of the tempering behaviors of different martensitic steels by mean of in-situ diffractometry and dilatometry, Materials, 13, 5058 (2020). Doi: https://doi.org/10.3390/ma13225058 

  18. V. Massardier, M. Goune, D. Fabregue, A. Selouane, T. Douillard, and O. Bouaziz, Evolution of microstructure and strength during the ultra-fast tempering of Fe-Mn-C martensitic steels, Journal of Materials Science, 49, 7782 (2014). Doi: https://doi.org/10.1007/s10853-014-8489-4 

  19. J. Krawczyk, P. Bala, and J. Pacyna, The effect of carbide precipitate morphology on fracture toughness in low-tempered steels containing Ni, Journal of Microscopy, 237, 411 (2010). Doi: https://doi.org/10.1111/j.1365-2818.2009.03275.x. 

  20. X. Zhu, W. Li, T. Y. Hsu, S. Zhou, L. Wang, and X. Jin, Improved resistance to hydrogen embrittlement in a high-strength steel by quenching-partitioning-tempering treatment, Scripta Materialia, 97, 21 (2015). Doi: https://doi.org/10.1016/j.scriptamat.2014.10.030 

  21. A. Nazarov, V. Vivier, F. Vucko, and D. Thierry, Effect of tensile stress on the passivity breakdown and repassivation of AISI 304 stainless steel: A scanning kelvin probe and scanning electrochemical microscopy study, Journal of The Electrochemical Society, 166, C3207 (2019). Doi: https://doi.org/10.1149/2.0251911jes 

  22. H. Miyamoto, M. Yuasa, M. Rifai, and H. Fujiwara, Corrosion behavior of severely deformed pure and single-phase materials, Materials transaction, 60, 1243 (2019). Doi: https://doi.org/10.2320/matertrans.MF201935 

  23. D. Clover, B. Kinsella, B. Pejcic, and R. de Marco, The influence of microstructure on the corrosion rate of various carbon steel, Journal of Applied Electrochemistry, 35, 139 (2005). Doi: https://doi.org/10.1007/s10800-004-6207-7 

  24. J. S. Park, H. G. Seong, and S. J. Kim, Effect of heat treatment conditions on corrosion and hydrogen diffusion behaviors of ultra-strong steel used for automotive applications, Corrosion Science and Technology, 18, 267 (2019). Doi: https://doi.org/10.14773/CST.2020.19.2.100 

  25. S. Nesic, M. Nordsveen, R. Nyborg, and A. Stangeland, A mechanistic model for carbon dioxide corrosion of mild steel in the presence of protective iron carbonate films-part 2: a numerical experiment, Corrosion, 59, 489 (2003). Doi: https://doi.org/10.5006/1.3277579 

  26. D. A. Lopez, W. H. Schreiner, S. R. de Sanchez, and S. N. Simison, The influence of carbon steel microstructure on corrosion layers an XPS and SEM characterization, Applied Surface Science, 207, 69 (2003). Doi: https://doi.org/10.1016/s0169-4332(02)01218-7 

  27. J. Flis, H. W. Pickering, and K. Osseo-Asare, Interpretation of impedance data for reinforcing steel in alkaline solution contatining chlorides and acetates, Electrochemica Acta, 43, 1921 (1998). Doi: https://doi.org/10.1016/S0013-4686(97)10004-4 

  28. S. B. Shin, S. J. Song, Y. W. Shin, J. G. Kim, B. J. Park, and Y. C. Suh, Effect of molybdenum on the corrosion of low alloy steels in synthetic seawater, Materials Transactions, 57, 2116 (2016). Doi: https://doi.org/10.2320/matertrans.M2016222 

  29. E. Serra, A. Perujo, and G. Benamati, Influence of traps on the deuterium behavior in the low activation martensitic steels F82H and Batman, Journal of Nuclear Materials, 245, 108 (1997). Doi: https://doi.org/10.1016/S0022-3115(97)00021-4 

  30. H. K. D. H. Bhadeshia, Prevention of hydrogen embrittlement in steels, ISIJ International, 56, 24 (2016). Doi: http://dx.doi.org/10.2355/isijinternational.ISIJINT-2015-430 

  31. B. D. Craig, On the elastic interaction of hydrogen with precipitates in lath martensite, Acta Metallurgica, 25, 1027 (1977). Doi: https://doi.org/10.1016/0001-6160(77)90131-6 

  32. K. Kiuchi and R. B. McLellan, The solubility and diffusivity of hydrogen in well-annealed and deformed iron, Acta Metallurgica, 31, 961 (1983). Doi: https://doi.org/10.1016/0001-6160(83)90192-X 

  33. W. Y. Choo and J. Y. Lee, Hydrogen trapping phenomena in carbon steel, Journal of Materials Science, 17, 1930 (1982). Doi: https://doi.org/10.1007/BF00540409 

  34. A. McNabb and P. K. Foster, A new analysis of the diffusion of hydrogen in iron and ferritic steels, Transaction of the Metallurgical Society of AIME, 277, 618 (1963). 

  35. G. W. Hong and J. Y. Lee, The interaction of hydrogen and the cementite-ferrite interface in carbon steel, Journal of Materials Science, 18, 271 (1983). Doi: https://doi.org/10.1007/-BF00543835 

  36. I. M. Bernstein, The effect of hydrogen on the deformation of iron, Scripta Metallurgica, 8, 343 (1974). Doi: https://doi.org/10.1016/0036-9748(74)90136-7 

  37. S. J. Kim, E. H. Hwang, J. S. Park, S. M. Ryu, D. W. Yun, and H. G. Seong, Inhibiting hydrogen embrittlement in ultra-strong steels for automotive application by Ni-alloying, npj Materials Degradation, 3, 12 (2019). Doi: https://doi.org/10.1038/s41529-019-0074-5 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로