최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기대한원격탐사학회지 = Korean journal of remote sensing, v.38 no.6 pt.1, 2022년, pp.1035 - 1046
김예슬 (한국항공우주연구원 국가위성정보활용지원센터)
This study evaluated the applicability of multi-resolution data fusion for land-cover classification. In the applicability evaluation, a spatial time-series geostatistical deconvolution/fusion model (STGDFM) was applied as a multi-resolution data fusion model. The study area was selected as some agr...
Gao, F., J. Masek, M. Schwaller, and F. Hall, 2006. On the blending of the Landsat and MODIS surface reflectance: Predicting daily Landsat surface reflectance, IEEE Transactions on Geoscience and Remote Sensing, 44(8): 2207-2218. https://doi.org/10.1109/TGRS.2006.872081
Ghamisi, P., B. Rasti, N. Yokoya, Q. Wang, B. Hofle, L. Bruzzone, F. Bovolo, M. Chi, K. Anders, R. Gloageun, P.M. Atkinson, and J.A. Benediktsson, 2019. Multisource and multitemporal data fusion in remote sensing: A comprehensive review of the state of the art, IEEE Geoscience and Remote Sensing Magazine, 7(1): 6-39. https://doi.org/10.1109/MGRS.2018.2890023
Huang, B. and H. Song, 2012. Spatiotemporal reflectance fusion via sparse representation, IEEE Transactions on Geoscience and Remote Sensing, 50(10): 3707-3716. https://doi.org/10.1109/TGRS.2012.2186638
Karagiannopoulou, A., A. Tsertou, G. Tsimiklis, and A. Amditis, 2022. Data fusion in earth observation and the role of citizen as a sensor: A scoping review of applications, methods and future trends, Remote Sensing, 14(5): 1263. https://doi.org/10.3390/rs14051263
Kim, Y., G.-H. Kwak, K.-D. Lee, S.-I. Na, C.-W. Park, and N.-W. Park, 2018. Performance evaluation of machine learning and deep learning algorithms in crop classification: Impact of hyper-parameters and training sample size, Korean Journal of Remote Sensing, 34(5): 811-827 (in Korean with English abstract). https://doi.org/10.7780/kjrs.2018.34.5.9
Kim, Y., P.C. Kyriakidis, and N.-W. Park, 2020. A cross-resolution, spatiotemporal geostatistical fusion model for combining satellite image time-series of different spatial and temporal resolutions, Remote Sensing, 12(10): 1553. https://doi.org/10.3390/rs12101553
Kwak, G.-H. and N.-W. Park, 2019. Impact of texture information on crop classification with machine learning and UAV images, Remote Sensing, 9(4): 643. https://doi.org/10.3390/app9040643
Kwak, G.-H. and N.-W. Park, 2022. Unsupervised domain adaptation with adversarial self-training for crop classification using remote sensing images, Remote Sensing, 14(18): 4639. https://doi.org/10.3390/rs14184639
Kyriakidis, P.C., 2004. A geostatistical framework for area-to-point spatial interpolation, Geographical Analysis, 36(3): 259-289. https://doi.org/10.1111/j.1538-4632.2004.tb01135.x
Kyriakidis P.C. and A.G. Journel, 2001. Stochastic modeling of atmospheric pollution: A spatial time-series framework, Part 1: Methodology, Atmospheric Environment, 35(13): 2331-2337. https://doi.org/10.1016/S1352-2310(00)00541-0
Kyriakidis, P.C., N.L. Miller, and J. Kim, 2004. A spatial time series framework for simulating daily precipitation at regional scales, Journal of Hydrology, 297(1-4): 236-255. https://doi.org/10.1016/j.jhydrol.2004.04.022
Lark, T.J., I.H. Schelly, and H.K. Gibbs, 2021. Accuracy, bias, and improvements in mapping crops and cropland across the United States using the USDA cropland data layer, Remote Sensing, 13(5): 968. https://doi.org/10.3390/rs13050968
Park, S., S.-H. Cho, N.-W. Park, and H. Kim, 2021. Evaluation of spatio-temporal multi-sensor image fusion models for generating time-series Landsat images: A case study in Mt. Halla, Journal of Climate Research, 16(4): 291-306 (in Korean with English abstract). https://doi.org/10.14383/cri.2021.16.4.291
Pelletier, C., S. Valero, J. Inglada, N. Champion, and G. Dedieu, 2016. Assessing the robustness of random forests to map land cover with high resolution satellite image time series over large areas, Remote Sensing of Environment, 187: 156-168. https://doi.org/10.1016/j.rse.2016.10.010
Shen, Y., X. Zhang, and Z. Yang, 2022. Mapping corn and soybean phenometrics at field scales over the United States Corn Belt by fusing time series of Landsat 8 and Sentinel-2 data with VIIRS data, ISPRS Journal of Photogrammetry and Remote Sensing, 186: 55-69. https://doi.org/10.1016/j.isprsjprs.2022.01.023
Song, H. and B. Huang, 2013. Spatiotemporal satellite image fusion through one-pair image learning, IEEE Transactions on Geoscience and Remote Sensing, 51(4): 1883-1896. https://doi.org/10.1109/TGRS.2012.2213095
U.S. Department of Agriculture, 2022. National Agricultural Statistics Service, https://www.nass.usda.gov/, Accessed on Sep. 15, 2022.
U.S. Geological Survey, 2022a. Earth Explorer, https://earthexplorer.usgs.gov/, Accessed on Oct. 1, 2022.
U.S. Geological Survey, 2022b. Land Processes Distributed Active Archive Center, https://lpdaac.usgs.gov/, Accessed on Oct. 1, 2022.
Xue, J., Y. Leung, and T. Fung, 2017. A Bayesian data fusion approach to spatio-temporal fusion of remotely sensed images, Remote Sensing, 9(12): 1310. https://doi.org/10.3390/rs9121310
Yang, S., L. Gu, X. Li, T. Jiang, and R. Ren, 2020. Crop classification method based on optimal feature selection and hybrid CNN-RF networks for multi-temporal remote sensing imagery, Remote Sensing, 12(19): 3119. https://doi.org/10.3390/rs12193119
Zhu, X., J. Chen, F. Gao, X. Chen, and J.G. Masek, 2010. An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions, Remote Sensing of Environment, 114(11): 2610-2623. https://doi.org/10.1016/j.rse.2010.05.032
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
오픈액세스 학술지에 출판된 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.