$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 위성기반 증발산량 및 토양수분량 산정 국내 연구동향
Research Status of Satellite-based Evapotranspiration and Soil Moisture Estimations in South Korea 원문보기

대한원격탐사학회지 = Korean journal of remote sensing, v.38 no.6 pt.1, 2022년, pp.1141 - 1180  

최가영 (K-water연구원 수자원환경연구소) ,  조영현 (K-water연구원 수자원환경연구소)

초록
AI-Helper 아이콘AI-Helper

최근 수문 및 수자원 분야에서 위성영상의 활용성이 높아짐에 따라 관련 전용 위성 개발연구와 연계하여 위성을 활용한 증발산량과 토양수분량 산정 연구의 필요성이 강조되고 있다. 본 연구에서는 이러한 위성을 기반으로 증발산량 및 토양수분량의 국내 연구현황과 그 산정 방법론을 조사하여 현재까지의 연구동향을 파악하고자 하였다. 국내 연구현황을 세부 방법론 별로 살펴본 결과 일반적으로 증발산량의 경우는 Surface Energy Balance Algorithm for Land (SEBAL), Mapping Evapotranspiration with Internalized Calibration (METRIC)과 같은 에너지수지 기반 모형과 Penman-Monteith (PM) 및 Priestley-Taylor (PT) 산출식을 기반으로 산정되었으며, 토양수분량의 경우 능동형(AMSR-E, AMSR2, MIRAS, SMAP) 및 수동형(ASCAT, SAR)와 같은 마이크로파 센서를 통한 산정이 주를 이루었다. 통계적 측면에서는 증발산량 및 토양수분량 공통적으로 회귀식 및 인공지능을 이용한 산출사례를 찾을 수 있었다. 또한 위성기반 자료들을 이용한 Evaporative Stress Index (ESI), Temperature-Vegetation Dryness Index (TVDI), Soil Moisture Deficit Index (SMDI) 등의 다양한 지표를 산정하여 가뭄 특성파악에 적용한 연구 사례도 다수 있었으며, 지표모형(Land Surface Model, LSM)을 기반으로 하여 위성 다중센서에서 얻을 수 있는 주요 자료들을 활용해 증발산량과 토양수분량의 수문순환인자를 산출하기도 하였다. 본 논문에서는 이렇게 기존 연구사례 조사 및 내용파악 과정을 통해 위성을 활용한 주요 세부 방법론을 비교·검토 제시함으로써 관련 연구분야 기준 참고자료로의 활용 및 향후 위성기반 관련 수문순환 자료 산출 고도화 연구의 초석을 다지고자 한다.

Abstract AI-Helper 아이콘AI-Helper

The application of satellite imageries has increased in the field of hydrology and water resources in recent years. However, challenges have been encountered on obtaining accurate evapotranspiration and soil moisture. Therefore, present researches have emphasized the necessity to obtain estimations ...

주제어

표/그림 (7)

AI 본문요약
AI-Helper 아이콘 AI-Helper

문제 정의

  • 특히, 물리적 방법으로 산정된 증발산량과 토양수분량은 가뭄 해석에도 유용한 수문인자이다. 국내에서도 최근 가뭄 분석 연구들이 늘어남에 따라 다양한 관련 지표가 활용되어왔는데, 본 절에서는 증발산량 및 토양수분량 산정과 관련이 있는 대표적인 지수에 대해 기술하고자 한다.
  • 한편, 공통적인 주제로는 가뭄 모니터링 등에 활용을 위한 가뭄 및 지표 수분량에 대한 지수를 산출하는 내용이 있었으며, 지표모형(LSM)을 사용하여 증발산량과 토양수분량을 산정하기도 하였다. 따라서, 본 절에서는 각각의 세부 방법론에 대한 설명을 통해 위성영상 자료를 활용한 증발산량 및 토양수분량 산정의 체계적 분류 및 관련 이론적 근거를 제시하고자 한다.
  • 본 연구에서는 위성을 기반으로 한 증발산량 및 토양 수분량의 국내 연구현황과 그 산정 방법론을 조사하여 현재까지의 연구동향을 파악하고자 하였다. 1995년이후 2021년까지 국내학술지에 등재된 문헌을 기준으로 각각의 자료 산출과정을 방법별로 정리하였으며, 국내의 현황뿐만 아니라 연관된 국외사례도 추가 기술하여 위성을 활용한 관련 연구의 포괄적인 검토가 되도록 하였다.
  • 이러한 상기 과정을 통해 위성을 활용한 증발산량 및 토양수분량 자료 산정의 주요 세부 방법론을 비교·검토 및 제시하여 관련 연구분야 기준 참고자료로의 활용 및 향후 위성영상 정보를 바탕으로 한 관련 수문 순환 자료 산출 고도화 연구의 초석을 다지고자 한다.
본문요약 정보가 도움이 되었나요?

참고문헌 (184)

  1. Agam, N., W.P. Kustas, M.C. Anderson, J.M. Norman, P.D. Colaizzi, T.A. Howell, J.H. Prueger, T.P. Meyers, and T.B. Wilson, 2010. Application of the Priestley-Taylor approach in a two-source surface energy balance model, Journal of Hydrometeorology, 11(1): 185-198. https://doi.org/10.1175/2009JHM1124.1 

  2. Ahmad, M.D., T. Biggs, H. Turral, and C. A. Scott, 2006. Application of SEBAL approach and MODIS time-series to map vegetation water use patterns in the data scarce Krishna river basin of India, Water Science and Technology, 53(10): 83-90. https://doi.org/10.2166/wst.2006.301 

  3. Allen, R.G., L.S. Pereira, D. Raes, and M. Smith, 1998. Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56, Food and Agriculture Organization of the United Nations, Rome, Italy. 

  4. Allen, R.G., M. Tasumi, and A. Morse, 2005. Satellite-based evapotranspiration by METRIC and Landsat for western states water management, Proc. of US Bureau of Reclamation Evapotranspiration Workshop, Fort Collins, CO, USA, Feb. 8-10, pp. 8-10. 

  5. Allen, R.G., M. Tasumi, A. Morse, R. Trezza, J.L. Wright, W. Bastiaanssen, W. Kramber, I. Lorite, and C.W. Robison, 2007a. Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)-Applications, Journal of Irrigation and Drainage Engineering, 133(4): 395-406. https://doi.org/10.1061/(ASCE)0733-9437(2007)133:4(395) 

  6. Allen, R.G., M. Tasumi, and R. Trezza, 2007b. Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)-Model, Journal of Irrigation and Drainage Engineering, 133(4): 380-394. https://doi.org/10.1061/(ASCE)0733-9437(2007)133:4(380) 

  7. Anderson, M., J. Norman, G. Diak, W. Kustas, and J. Mecikalski, 1997. A two-source time-integrated model for estimating surface fluxes using thermal infrared remote sensing, Remote Sensing of Environment, 60(2): 195-216. https://doi.org/10.1016/S0034-4257(96)00215-5 

  8. Anderson, M.C., C. Hain, J. Otkin, X. Zhan, K. Mo, M. Svoboda, B. Wardlow, and A. Pimstein, 2013. An intercomparison of drought indicators based on thermal remote sensing and NLDAS-2 simulations with US Drought Monitor classifications, Journal of Hydrometeorology, 14(4): 1035-1056. https://doi.org/10.1175/JHM-D-12-0140.1 

  9. Anderson, C., J.A.D. Hildreth, and L. Howland, 2015. Is the desire for status a fundamental human motive? A review of the empirical literature, Psychological Bulletin, 141(3): 574. https://doi.org/10.1037/a0038781 

  10. Anonymous, 2015. High-Resolution Global Soil Moisture Map, https://www.jpl.nasa.gov/images/pia19337-high-resolution-global-soil-moisture-map, Accessed on Nov. 10, 2022. 

  11. Attema, E. and F.T. Ulaby, 1978. Vegetation modeled as a water cloud, Radio Science, 13 (2): 357-364. https://doi.org/10.1029/RS013i002p00357 

  12. Baghdadi, N., M. Zribi, C. Loumagne, P. Ansart, and T. P. Anguela, 2008. Analysis of TerraSAR-X data and their sensitivity to soil surface parameters over bare agricultural fields, Remote Sensing of Environment, 112(12): 4370-4379. https://doi.org/10.1016/j.rse.2008.08.004 

  13. Baik, J.J. and M.H. Choi, 2014. Actual evapotranspiration evaluation using Communication, Ocean and Meteorological satellite, Proc. of Korean Society for Civil Engineers Conference, Daegu, Korea, Oct. 22-24, pp. 215-216. 

  14. Baik, J.J., J.M. Park, and M.H. Choi, 2016. Assessment of actual evapotranspiration using modified satellite-based priestley-taylor algorithm using MODIS products, Journal of Korea Water Resources Association, 49(11): 903-912. https://doi.org/10.3741/JKWRA.2016.49.11.903 

  15. Baik, J.J., J.H. Jeong, and M.H. Choi, 2018. Estimation of the optimal evapotranspiration by using satellite-and reanalysis model-based evapotranspiration estimations, Journal of Korea Water Resources Association, 51(3): 273-280. https://doi.org/10.3741/JKWRA.2018.51.3.273 

  16. Baik, J.J., S.K. Cho, S.C. Lee, and M.H. Choi, 2019. Analysis on Adequacy of the Satellite Soil Moisture Data (AMSR2, ASCAT, and ESACCI) in Korean Peninsula: With Classification of Freezing and Melting Periods, Korean Journal of Remote Sensing, 35(5-1): 625-636 (in Korean with English abstract). https://doi.org/10.7780/kjrs.2019.35.5.1.1 

  17. Balsamo, G., A. Agusti-Parareda, C. Albergel, G. Arduini, A. Beljaars, J. Bidlot, E. Blyth, N. Bousserez, S. Boussetta, and A. Brown, 2018. Satellite and in situ observations for advancing global Earth surface modelling: A Review, Remote Sensing, 10(12): 2038. https://doi.org/10.7780/kjrs.2019.35.5.1.1 

  18. Barrett, B., E. Dwyer, and P. Whelan. 2009. Soil Moisture Retrieval from Active Spaceborne Microwave Observations: An Evaluation of Current Techniques, Remote Sensing, 1(3): 210-242. https://doi.org/10.3390/rs1030210 

  19. Bastiaanssen, W.G., M. Menenti, R. Feddes, and A. Holtslag, 1998. A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation, Journal of Hydrology, 212: 198-212. https://doi.org/10.1016/S0022-1694(98)00253-4 

  20. Bastiaanssen, W.G., 2000. SEBAL-based sensible and latent heat fluxes in the irrigated Gediz Basin, Turkey, Journal of Hydrology, 229(1-2): 87-100. https://doi.org/10.1016/S0022-1694(99)00202-4 

  21. Bhattarai, N., S.B. Shaw, L.J. Quackenbush, J. Im, and R. Niraula, 2016. Evaluating five remote sensing based single-source surface energy balance models for estimating daily evapotranspiration in a humid subtropical climate, International Journal of Applied Earth Observation and Geoinformation, 49: 75-86. https://doi.org/10.1016/j.jag.2016.01.010 

  22. Bindlish, R., T.J. Jackson, E. Wood, H. Gao, P. Starks, D. Bosch, and V. Lakshmi, 2003. Soil moisture estimates from TRMM Microwave Imager observations over the Southern United States, Remote Sensing of Environment, 85(4): 507-515. https://doi.org/10.1016/S0034-4257(03)00052-X 

  23. Brutsaert, W. and H. Stricker, 1979. An advection-aridity approach to estimate actual regional evapotranspiration, Water Resources Research, 15(2): 443-450. 

  24. Cai, X., Z.L. Yang, C.H. David, G.Y. Niu, and M. Rodell, 2014. Hydrological evaluation of the Noah-MP land surface model for the Mississippi River Basin, Journal of Geophysical Research: Atmospheres, 119(1): 23-38. https://doi.org/10.1029/WR015i002p00443 

  25. Chae, H.S., Y.S. Song, and J.Y. Park, 2000. An Assessment of Areal Evaportranspiration Using Landsat TM Data, Journal of Korea Water Resources Association, 33(4): 471-482. 

  26. Chae, S.H., S.H. Park, and M.J. Lee, 2017. A study on the observation of soil moisture conditions and its applied possibility in agriculture using land surface temperature and NDVI from landsat-8 OLI/TIRS satellite image, Korean Journal of Remote Sensing, 33(6-1): 931-946 (in Korean with English abstract). http://dx.doi.org/10.7780/kjrs.2017.33.6.1.3 

  27. Chai, S.S., B. Veenendaal, G. West, and J.P. Walker, 2008. Backpropagation neural network for soil moisture retrieval using NAFE '05 data: a comparison of different training algorithms, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 37: 1345-1349. 

  28. Chan, S.K., R. Bindlish, P.E. O'Neill, E. Njoku, T. Jackson, A. Colliander, F. Chen, M. Burgin, S. Dunbar, and J. Piepmeier, 2016. Assessment of the SMAP passive soil moisture product, IEEE Transactions on Geoscience and Remote Sensing, 54(8): 4994-5007. https://doi.org/10.1109/TGRS.2016.2561938 

  29. Chen, K., S. Yen, and W. Huang, 1995. A simple model for retrieving bare soil moisture from radar-scattering coefficients, Remote Sensing of Environment, 54(2): 121-126. https://doi.org/10.1016/0034-4257(95)00129-O 

  30. Cho, E.S., M.H. Choi, and W. Wagner, 2015. An assessment of remotely sensed surface and root zone soil moisture through active and passive sensors in northeast Asia, Remote Sensing of Environment, 160: 166-179. https://doi.org/10.1016/j.rse.2015.01.013 

  31. Cho, E., S.-U. Song, and C. Yoo, 2017. Analysis and Validation of Soil Moisture Data over the Korean Peninsula Simulated by the VIC Model, Journal of Wetlands Research, 19(1): 52-62. https://doi.org/10.1016/j.rse.2015.01.013 

  32. Cho, S.K., J.H. Jeong, S.C. Lee, and M.H. Choi, 2020. A estimation of soil moisture based on sentinel-1 SAR data: focusing on cropland and grassland area, Journal of Korea Water Resources Association, 53(11): 973-983. https://doi.org/10.3741/JKWRA.2020.53.11.973 

  33. Cho, S.K., J.H. Jeong, S.C. Lee, and M.H. Choi, 2021. Estimation of soil moisture based on Sentinel-1 SAR data: Assessment of soil moisture estimation in different vegetation condition, Journal of Korea Water Resources Association, 54(2): 81-91. https://doi.org/10.3741/JKWRA.2021.54.2.81 

  34. Choi, M.H., G.T. Hwang, and T.W. Kim, 2011. Characteristics of Greenup and Senescence for Evapotranspiration in Gyeongan Watershed Using Landsat Imagery, KSCE Journal of Civil Engineering, 31(1B): 29. https://doi.org/10.12652/Ksce.2011.31.1B.029 

  35. Choudhury, B., T. Schmugge, and T. Mo, 1982. A parameterization of effective soil temperature for microwave emission, Journal of Geophysical Research: Oceans, 87(C2): 1301-1304. https://doi.org/10.1029/JC087iC02p01301 

  36. Chun, J.A., S.T. Kim, W.-S. Lee, and D. Kim, 2020. Assessment of Noah land surface model-based soil moisture using GRACE-observed TWSA and TWSC, Journal of Korea Water Resources Association, 53(4): 285-291. https://doi.org/10.3741/JKWRA.2020.53.4.285 

  37. Chung, J.H., M.B. Son, Y.W. Lee, and S.J. Kim, 2021. Estimation of Soil Moisture Using Sentinel-1 SAR Images and Multiple Linear Regression Model Considering Antecedent Precipitations, Korean Journal of Remote Sensing, 37(3): 515-530. https://doi.org/10.7780/kjrs.2021.37.3.12 

  38. Cleugh, H.A., R. Leuning, Q. Mu, and S.W. Running, 2007. Regional evaporation estimates from flux tower and MODIS satellite data, Remote Sensing of Environment, 106(3): 285-304. https://doi.org/10.1016/j.rse.2006.07.007 

  39. Cui, Y., X. Chen, J. Gao, B. Yan, G. Tang, and Y. Hong, 2018. Global water cycle and remote sensing big data: overview, challenge, and opportunities, Big Earth Data, 2(3): 282-297. https://doi.org/10.1080/20964471.2018.1548052 

  40. D'urso, G. and M. Minacapilli, 2006. A semi-empirical approach for surface soil water content estimation from radar data without a-priori information on surface roughness, Journal of Hydrology, 321(1-4): 297-310. https://doi.org/10.1016/j.jhydrol.2005.08.013 

  41. De Jeu, R.D. and M. Owe, 2003. Further validation of a new methodology for surface moisture and vegetation optical depth retrieval, International Journal of Remote Sensing, 24(22): 4559-4578. https://doi.org/10.1080/0143116031000095934 

  42. Draper, C.S., J.P. Walker, P.J. Steinle, R.A. De Jeu, and T.R. Holmes, 2009. An evaluation of AMSR-E derived soil moisture over Australia, Remote Sensing of Environment, 113 (4): 703-710. https://doi.org/10.1016/j.rse.2008.11.011 

  43. Dubois, P.C., J. Van Zyl, and T. Engman, 1995. Measuring soil moisture with imaging radars, IEEE Transactions on Geoscience and Remote Sensing, 33(4): 915-926. https://doi.org/10.1109/36.406677 

  44. Eagleman, J.R. and W.C. Lin, 1976. Remote sensing of soil moisture by a 21-cm passive radiometer, Journal of Geophysical Research, 81(21): 3660-3666. https://doi.org/10.1029/JC081i021p03660 

  45. Engman, E.T., 1990. Progress in microwave remote sensing of soil moisture, Canadian Journal of Remote Sensing, 16(3): 6-14. https://doi.org/10.1080/07038992.1990.11487620 

  46. Engman, E.T. and N. Chauhan, 1995. Status of microwave soil moisture measurements with remote sensing, Remote Sensing of Environment, 51(1): 189-198. https://doi.org/10.1016/0034-4257(94)00074-W 

  47. Fisher, J.B., K.P. Tu, and D.D. Baldocchi, 2008. Global estimates of the land-atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites, Remote Sensing of Environment, 112(3): 901-919. https://doi.org/10.1016/j.rse.2007.06.025 

  48. Friedl, M.A., 2002. Forward and inverse modeling of land surface energy balance using surface temperature measurements, Remote Sensing of Environment, 79(2-3): 344-354. https://doi.org/10.1016/j.rse.2007.06.025 

  49. Fujii, H., T. Koike, and K. Imaoka, 2009. Improvement of the AMSR-E algorithm for soil moisture estimation by introducing a fractional vegetation coverage dataset derived from MODIS data, Journal of the Remote Sensing Society of Japan, 29(1): 282-292. https://doi.org/10.11440/rssj.29.282 

  50. Fung, A.K., Z. Li, and K.-S. Chen, 1992. Backscattering from a randomly rough dielectric surface, IEEE Transactions on Geoscience and Remote Sensing, 30(2): 356-369. https://doi.org/10.1109/36.134085 

  51. Goodfellow, I., Y. Bengio, and A. Courville, 2016. Deep learning, MIT press, Cambridge, MA, USA. 

  52. Gruber, A., C.-H. Su, S. Zwieback, W. Crow, W. Dorigo, and W. Wagner, 2016. Recent advances in (soil moisture) triple collocation analysis, International Journal of Applied Earth Observation and Geoinformation, 45: 200-211. https://doi.org/10.1016/j.jag.2015.09.002 

  53. Ha, R., H.J. Shin, M.S. Lee, and K.S. Joon, 2010. Estimation of Spatial Evapotranspiration Using satellite images and SEBAL Model, KSCE Journal of Civil Engineering, 30(3B): 233-242. 

  54. Hallikainen, M.T., F.T. Ulaby, M.C. Dobson, M.A. El-Rayes, and L.-K. Wu, 1985. Microwave dielectric behavior of wet soil-part 1: Empirical models and experimental observations, IEEE Transactions on Geoscience and Remote Sensing, 23(1): 25-34. https://doi.org/10.1109/TGRS.1985.289497 

  55. Hur, Y.M. and M.H. Choi, 2011. Advanced Microwave Scanning Radiometer E Soil Moisture Evaluation for Haenam Flux Monitoring Network Site, Korean Journal of Remote Sensing, 27(2): 131-140 (in Korean with English abstract). https://doi.org/10.7780/kjrs.2011.27.2.131 

  56. Jackson, T. and D.E. Le Vine, 1996. Mapping surface soil moisture using an aircraft-based passive microwave instrument: Algorithm and example, Journal of Hydrology, 184(1-2): 85-99. https://doi.org/10.1016/0022-1694(95)02969-9 

  57. Jang, K.C., S.K. Kang, H.W. Kim, and H.J. Kwon, 2009. Evaluation of shortwave irradiance and evapotranspiration derived from Moderate Resolution Imaging Spectroradiometer (MODIS), Asia-Pacific Journal of Atmospheric Sciences, 45(2): 233-246. 

  58. Jang, W.J., Y.W. Lee, J.W. Lee, and S.J. Kim, 2019. RNN-LSTM Based Soil Moisture Estimation Using Terra MODIS NDVI and LST, Journal of The Korean Society of Agricultural Engineers, 61(6): 123-132. https://doi.org/10.5389/KSAE.2019.61.6.123 

  59. Jeon, H.H., S.K. Cho, I.M. Chung, and M.H. Choi, 2021a. Evaluation of satellite-based evapotranspiration and soil moisture data applicability in Jeju Island, Journal of Korea Water Resources Association, 54(10): 835-848. https://doi.org/10.3741/JKWRA.2021.54.10.835 

  60. Jeon, M.G., W.H. Nam, H.J. Lee, E.M. Hong, S.A. Hwang, and S.O. Hur, 2021b. Drought Risk Assessment for Upland Crops using Satellite-derived Evapotranspiration and Soil Available Water Capacity, Journal of the Korean Society of Hazard Mitigation, 21(1): 25-33. https://doi.org/10.9798/KOSHAM.2021.21.1.25 

  61. Jeong, S. and S.C. Shin, 2006. The Application of Satellite Imagery in Droughts Analysis of Large Area, Korea Spatial Information Society, 14(2): 55-62. 

  62. Jeong, S.T., K.C. Jang, S.K. Kang, J. Kim, H. Kondo, M. Gamo, J. Asanuma, N. Saigusa, S. Wang, and S. Han, 2009. Evaluation of MODIS-derived Evapotranspiration at the Flux Tower Sites in East Asia, Korean Journal of Agricultural and Forest Meteorology, 11(4): 174-184. https://doi.org/10.5532/KJAFM.2009.11.4.174 

  63. Jeong, J.H., J.J. Baik, and M.H. Choi, 2018. Estimation of dryness index based on COMS to monitoring the soil moisture status at the Korean peninsula, Journal of Korea Water Resources Association, 51(2): 89-98. https://doi.org/10.3741/JKWRA.2018.51.2.89 

  64. Jun, S.H., J.H. Park, K.O. Boo, and H.S. Kang, 2020. Analyzing off-line Noah land surface model spin-up behavior for initialization of global numerical weather prediction model, Journal of Korea Water Resources Association, 53(3): 181-191. https://doi.org/10.3741/JKWRA.2020.53.3.181 

  65. Kalma, J.D., T.R. McVicar, and M.F. McCabe, 2008. Estimating land surface evaporation: A review of methods using remotely sensed surface temperature data, Surveys in Geophysics, 29(4): 421-469. https://doi.org/10.1007/s10712-008-9037-z 

  66. Karthikeyan, L., M. Pan, N. Wanders, D.N. Kumar, and E.F. Wood, 2017. Four decades of microwave satellite soil moisture observations: Part 1. A review of retrieval algorithms, Advances in Water Resources, 109: 106-120. https://doi.org/10.1016/j.advwatres.2017.09.006 

  67. Kerr, Y.H., P. Waldteufel, J.P. Wigneron, S. Delwart, F. Cabot, J. Boutin, M.J. Escorihuela, J. Font, N. Reul, C. Gruhier, S.E. Juglea, M.R. Drinkwater, A. Hahne, M. Martin-Neira, and S. Mecklenburg, 2010. The SMOS Mission: New Tool for Monitoring Key Elements of the Global Water Cycle, Proceedings of the IEEE, 98(5): 666-687. https://doi.org/10.1109/JPROC.2010.2043032 

  68. Kerr, Y.H., P. Waldteufel, P. Richaume, J.P. Wigneron, P. Ferrazzoli, A. Mahmoodi, A.A. Bitar, F. Cabot, C. Gruhier, S.E. Juglea, D. Leroux, A. Mialon, and S. Delwart, 2012. The SMOS Soil Moisture Retrieval Algorithm, IEEE Transactions on Geoscience and Remote Sensing, 50(5): 1384-1403. https://doi.org/10.1109/TGRS.2012.2184548 

  69. Kim, J.H. and K.T. Kim, 2005. Estimation of Potential Evapotranspiration using LAI, Journal of the Korean Association of Geographic Information Studies, 8(4): 1-13. 

  70. Kim, G.S. and H.G. Park, 2010. Soil moisture estimation using CART algorithm and ancillary Data, Journal of Korea Water Resources Association, 43(7): 597-608. https://doi.org/10.3741/JKWRA.2010.43.7.597 

  71. Kim, G.S. and J.P. Kim, 2011. Correlation Analysis Between Soil Moisture Retrieved from Satellite Images and Ground Network Measurements, Journal of the Korean Association of Geographic Information Studies, 14(2): 69. https://doi.org/10.11108/kagis.2011.14.2.069 

  72. Kim, G.S. and J.A. Park, 2011. Development of a Soil Moisture Estimation Model Using Artificial Neural Networks and Classification and Regression Tree (CART), KSCE Journal of Civil Engineering, 31(2B): 155-163. https://doi.org/10.12652/Ksce.2011.31.2B.155 

  73. Kim, M.J., G.S. Kim, and J.E. Yi, 2015. Bias Correction of AMSR2 Soil Moisture Data Using Ground Observations, Journal of The Korean Society of Agricultural Engineers, 57(4): 61-71. https://doi.org/10.5389/KSAE.2015.57.4.061 

  74. Kim, H.L. and M.H. Choi, 2015. An Inter-comparison of Active and Passive satellite Soil Moisture Products in East Asia for Dust-Outbreak Prediction, Journal of the Korean Society of Hazard Mitigation, 15(4): 53-58. http://dx.doi.org/10.9798/KOSHAM.2015.15.4.53 

  75. Kim, D.S. and K.J. Kim, 2017. Downscaling Advanced Microwave Scanning Radiometer 2 (AMSR2) soil moisture data using regression-kriging, Journal of the Korean Cartographic Association, 17(2): 99-110. https://doi.org/10.4172/2169-0049.1000 

  76. Kim, H.L., S.K. Kim, J.H. Jeong, I.C. Shin, J.H. Shin, and M.H. Choi, 2016a. Revising Passive Satellite-based Soil Moisture Retrievals over East Asia Using SMOS (MIRAS) and GCOM-W1 (AMSR2) Satellite and GLDAS Dataset, Journal of Wetlands Research, 18 (2): 132-147. https://doi.org/10.17663/JWR.2016.18.2.132 

  77. Kim, H.L., W.Y. Sunwoo, S.K. Kim, and M.H. Choi, 2016b. Construction and estimation of soil moisture site with FDR and COSMIC-ray (SM-FC) sensors for calibration/validation of satellite-based and COSMIC-ray soil moisture products in Sungkyunkwan university, South Korea, Journal of Korea Water Resources Association, 49(2): 133-144. https://doi.org/10.3741/JKWRA.2016.49.2.133 

  78. Kim, S.K., H.L. Kim, and M.H. Choi, 2016c. Evaluation of satellite-based soil moisture retrieval over the Korean peninsula: using AMSR2 LPRM algorithm and ground measurement data, Journal of Korea Water Resources Association, 49(5): 423-429. https://doi.org/10.3741/JKWRA.2016.49.5.423 

  79. Kim, S.W., Y.C. Shin, T.H. Lee, S.H. Lee, K.S. Choi, Y.S. Park, K.J. Lim, and J.J. Kim, 2017a. Characteristics of Soil Moisture Distributions at the Spatio-Temporal Scales Based on the Land Surface Features Using MODIS Images, Journal of The Korean Society of Agricultural Engineers, 59(6): 29-37. https://doi.org/10.5389/KSAE.2017.59.6.029 

  80. Kim, Y.H., K.J. Kim, S.J. Lee, J.W. Kim, and Y.W. Lee, 2017b. Deep Learning-based Retrieval of Daily 500-m Soil Moisture for South Korea, Journal of the Korean Cartographic Association, 17(3): 109-121. https://doi.org/10.16879/jkca2017.17.3.109 

  81. Kim, S.W., T.H. Lee, B.S. Chun, Y.H. Jung, W.S. Jang, C.Y. Sur, and Y.C. Shin, 2020. Estimation of High-Resolution Soil Moisture Using Sentinel1A/B SAR and Soil Moisture Data Assimilation Scheme, Journal of The Korean Society of Agricultural Engineers, 62(6): 11-20. https://doi.org/10.5389/KSAE.2020.62.6.011 

  82. Kite, G., M. Danard, and B. Li, 1998. Simulating long series of streamflow using data from an atmospheric model, Hydrological Sciences Journal, 43(3): 391-407. https://doi.org/10.1080/02626669809492134 

  83. Koike, T., Y. Nakamura, I. Kaihotsu, G. Davaa, N. Matsuura, K. Tamagawa, and H. Fujii, 2004. Development of an advanced microwave scanning radiometer (AMSR-E) algorithm for soil moisture and vegetation water content, Proceedings of Hydraulic Engineering, 48: 217-222. https://doi.org/10.2208/prohe.48.217 

  84. Koster, R.D., M.J. Suarez, A. Ducharne, M. Stieglitz, and P. Kumar, 2000. A catchment-based approach to modeling land surface processes in a general circulation model: 1. Model structure, Journal of Geophysical Research: Atmospheres, 105(D20): 24809-24822. https://doi.org/10.1029/2000JD900327 

  85. Kroes, J., J. Van Dam, J. Huygen, and R. Vervoort. 1999. User's Guide of SWAP version 2.0. Simulation of water flow, solute transport and plant growth in the Soil-Water-Atmosphere-Plant environment, Technical Document 48, DLO Winand Staring Centre, Wageningen, Netherlands. 

  86. Kumar, S.V., R.H. Reichle, C.D. Peters-Lidard, R.D. Koster, X. Zhan, W. T. Crow, J. B. Eylander, and P.R. Houser, 2008. A land surface data assimilation framework using the land information system: Description and applications, Advances in Water Resources, 31(11): 1419-1432. https://doi.org/10.1016/j.advwatres.2008.01.013 

  87. Kustas, W.P., 1995. Recent advances associated with large scale field experiments in hydrology, Reviews of Geophysics, 33(S2): 959-965. https://doi.org/10.1029/95RG00395 

  88. Kustas, W. and J. Norman, 1996. Use of remote sensing for evapotranspiration monitoring over land surfaces, Hydrological Sciences Journal, 41(4): 495-516. https://doi.org/10.1080/02626669609491522 

  89. Kustas, W.P. and J.M. Norman, 1999a. Evaluation of soil and vegetation heat flux predictions using a simple two-source model with radiometric temperatures for partial canopy cover, Agricultural and Forest Meteorology, 94(1): 13-29. https://doi.org/10.1016/S0168-1923(99)00005-2 

  90. Kustas, W.P. and J.M. Norman, 1999b. Reply to comments about the basic equations of dual-source vegetation-atmosphere transfer models, Agricultural and Forest Meteorology, 94(3-4): 275-278. https://doi.org/10.1016/S0168-1923(99)00012-X 

  91. Kustas, W.P. and J.M. Norman, 2000. A two-source energy balance approach using directional radiometric temperature observations for sparse canopy covered surfaces, Agronomy Journal, 92(5): 847-854. https://doi.org/10.2134/agronj2000.925847x 

  92. Kwon, H.J., S.C. Shin, and S.J. Kim, 2004. Meteorological Water Balance Analysis using NOAA/AVHRR Satellite Images, Proc. of the Korea Water Resources Association Conference, Incheon, Korea, May 14-15, pp. 262-266. 

  93. Kwon, H.J., S.C. Shin, and S.J. Kim, 2005. Climatic water balance analysis using NOAA/AVHRR satellite images, Journal of The Korean Society of Agricultural Engineers, 47(1): 3-9. https://doi.org/10.5389/KSAE.2005.47.1.003 

  94. Lee, M.J., K.S. Han, and I.H. Kim, 2011. Estimation of Actual Evapotranspiration using Multi-Satellite Data over Korea Peninsula, The Journal of Korean Society for Geospatial Information Science, 19(4): 145-151. 

  95. Lee, Y.G., S.H. Kim, S.R. Ahn, M.H. Choi, K.S. Lim, and S.J. Kim, 2015a. Estimation of Spatial Evapotranspiration Using Terra MODIS Satellite Image and SEBAL Model - A Case of Yongdam Dam Watershed, Journal of the Korean Association of Geographic Information Studies, 18(1): 90-104. https://doi.org/10.11108/kagis.2015.18.1.090 

  96. Lee, Y.G., J.H. Lee, M.H. Choi, and S.W. Jung, 2015b. Evaluation of MODIS-derived Evapotranspiration According to the Water Budget Analysis, Journal of the Korean Water Resources Association, 48(10): 831-843. https://doi.org/10.3741/JKWRA.2015.48.10.831 

  97. Lee, J., M. Choi, and D. Kim, 2016a. Spatial merging of satellite based soil moisture and in-situ soil moisture using conditional merging technique, Journal of Korea Water Resources Association, 49(3): 263-273. https://doi.org/10.3741/JKWRA.2016.49.3.263 

  98. Lee, Y.G., C.G. Jung, S.R. Ahn, and S.J. Kim, 2016c. Estimation of spatial evapotranspiration using Terra MODIS satellite image and SEBAL model in mixed forest and rice paddy area, Journal of Korea Water Resources Association, 49(3): 227-239. https://doi.org/10.11108/kagis.2015.18.1.090 

  99. Lee, J.H., 2017. Assimilation of satellite based soil moisture data into a land surface model, Hongik University, Seoul, Korea, pp. 1-47. 

  100. Lee, Y.G., C.G. Jung, Y.H. Cho, and S.J. Kim, 2017a Estimation of soil moisture using multiple linear regression model and COMS land surface temperature data, Journal of The Korean Society of Agricultural Engineers, 59(1): 11-20. https://doi.org/10.5389/KSAE.2017.59.1.011 

  101. Lee, S.J., S.W. Hong, J.I. Cho, and Y.W. Lee, 2017b Experimental Retrieval of Soil Moisture for Cropland in South Korea Using Sentinel-1 SAR Data, Korean Journal of Remote Sensing, 33(6): 947-960. https://doi.org/10.7780/kjrs.2017.33.6.1.4 

  102. Lee, S.J., K.J. Kim, Y.H. Kim, J.W. Kim, S.W. Park, Y.S. Yun, N.R. Kim, and Y.W. Lee, 2018a. Deep Learning-based Estimation and Mapping of Evapotranspiration in Cropland using Local Weather Prediction Model and Satellite Data, Journal of the Korean Cartographic Association, 18(3): 105-116. https://doi.org/10.16879/jkca.2018.18.3.105 

  103. Lee, T.H., S.W. Kim, Y.H. Jung, and Y.C. Shin, 2018b. Assessment of Agricultural Drought Using Satellite-based TRMM/GPM Precipitation Images: At the Province of Chungcheongbuk-do, Journal of the Korean Society of Agricultural Engineers, 60(4): 73-82. https://doi.org/10.5389/KSAE.2018.60.4.073 

  104. Lee, T.H., S.W. Kim, and Y.C. Shin, 2018c. Development of Landsat-based Downscaling Algorithm for SMAP Soil Moisture Footprints, Journal of the Korean Society of Agricultural Engineers, 60(4): 49-54. https://doi.org/10.5389/KSAE.2018.60.4.049 

  105. Lee, T.H., S.W. Kim, and Y.C. Shin, 2018d. Development of Landsat-based Downscaling Algorithm for SMAP soil moisture footprints, Journal of the Korean Society of Agricultural Engineers, 60(4): 49-54. https://doi.org/10.5389/KSAE.2018.60.4.049 

  106. Lee, Y.G., B.S. Im, K.Y. Kim, and K.H. Rhee, 2020. Adequacy evaluation of the GLDAS and GLEAM evapotranspiration by eddy covariance method, Journal of Korea Water Resources Association, 53(10): 889-902. https://doi.org/10.3741/JKWRA.2020.53.10.889 

  107. Lee, H.J., W.H. Nam, D.H. Yoon, H.Y. Kim, S.B. Woo, and D.E. Kim, 2021. Drought Monitoring for Paddy Fields Using Satellite-derived Evaporative Stress Index, Journal of The Korean Society of Agricultural Engineers, 63(3): 47-57. https://doi.org/10.5389/KSAE.2021.63.3.047 

  108. Lettenmaier, D.P., D. Alsdorf, J. Dozier, G.J. Huffman, M. Pan, and E.F. Wood, 2015. Inroads of remote sensing into hydrologic science during the WRR era, Water Resources Research, 51(9): 7309-7342. https://doi.org/10.1002/2015WR017616 

  109. Li, Z.-L., R. Tang, Z. Wan, Y. Bi, C. Zhou, B. Tang, G. Yan, and X. Zhang, 2009. A review of current methodologies for regional evapotranspiration estimation from remotely sensed data, Sensors, 9(5): 3801-3853. https://doi.org/10.3390/s90503801 

  110. Maheu, A., F. Anctil, E. Gaborit, V. Fortin, D.F. Nadeau, and R. Therrien, 2018. A field evaluation of soil moisture modelling with the Soil, Vegetation, and Snow (SVS) land surface model using evapotranspiration observations as forcing data, Journal of Hydrology, 558: 532-545. https://doi.org/10.1016/j.jhydrol.2018.01.065 

  111. McDonough, K.R., S.L. Hutchinson, J.S. Hutchinson, J.L. Case, and V. Rahmani, 2018. Validation and assessment of SPoRT-LIS surface soil moisture estimates for water resources management applications, Journal of Hydrology, 566: 43-54. https://doi.org/10.1016/j.jhydrol.2018.09.007 

  112. Mecikalski, J.R., G.R. Diak, M.C. Anderson, and J.M. Norman, 1999. Estimating fluxes on continental scales using remotely sensed data in an atmospheric-land exchange model, Journal of Applied Meteorology, 38(9): 1352-1369. https://doi.org/10.1175/1520-0450(1999)038 2.0.CO;2 

  113. Miralles, D.G., T. Holmes, R. De Jeu, J. Gash, A. Meesters, and A. Dolman, 2011. Global land-surface evaporation estimated from satellite-based observations, Hydrology and Earth System Sciences, 15(2): 453-469. https://doi.org/10.5194/hessd-7-8479-2010 

  114. Mo, T., B.J. Choudhury, T.J. Schmugge, J.R. Wang, and T.J. Jackson, 1982. A model for microwave emission from vegetation-covered fields, Journal of Geophysical Research, 87(C13): 11229-11237. https://doi.org/10.1029/JC087iC13p11229 

  115. Monteith, J.L., 1965a. Evaporation and environment, Symposia of the Society for Experimental Biology, 19: 205-234. 

  116. Monteith, J.L., 1965b. The state and movement of water in living organisms, Cambridge University Press, Cambridge, UK, pp. 205-234. 

  117. Monteith, J.L., 1981. Evaporation and surface temperature, Quarterly Journal of the Royal Meteorological Society, 107(451): 1-27. https://doi.org/10.1002/qj.49710745102 

  118. Morton, F.I., 1978. Estimating evapotranspiration from potential evaporation: practicality of an iconoclastic approach, Journal of Hydrology, 38(1-2): 1-32. https://doi.org/10.1016/0022-1694(78)90129-4 

  119. Mu, Q., F.A. Heinsch, M. Zhao, and S.W. Running, 2007. Development of a global evapotranspiration algorithm based on MODIS and global meteorology data, Remote Sensing of Environment, 111(4): 519-536. https://doi.org/10.1016/j.rse.2007.04.015 

  120. Mu, Q., M. Zhao, and S.W. Running, 2011. Improvements to a MODIS global terrestrial evapotranspiration algorithm, Remote Sensing of Environment, 115(8): 1781-1800. https://doi.org/10.1016/j.rse.2011.02.019 

  121. Mu, Q., M. Zhao, and S.W. Running, 2013. MODIS global terrestrial evapotranspiration (ET) product (NASA MOD16A2/A3)-Algorithm Theoretical Basis Document, Collection 5, Algorithm Theoretical Basis Document, National Aeronautics and Space Administration, Washington, D.C., USA. 

  122. Njoku, E.G. and L. Li, 1999. Retrieval of land surface parameters using passive microwave measurements at 6-18 GHz, IEEE Transactions on Geoscience and Remote Sensing, 37(1): 79-93. https://doi.org/10.1109/36.739125 

  123. Njoku, E.G., T.J. Jackson, V. Lakshmi, T.K. Chan, and S.V. Nghiem, 2003. Soil moisture retrieval from AMSR-E, IEEE Transactions on Geoscience and Remote Sensing, 41(2): 215-229. https://doi.org/10.1109/TGRS.2002.808243 

  124. Njoku, E.G. and S.K. Chan, 2006. Vegetation and surface roughness effects on AMSR-E land observations, Remote Sensing of Environment, 100(2): 190-199. https://doi.org/10.1016/j.rse.2005.10.017 

  125. Norman, J.M., M.C. Anderson, W.P. Kustas, A.N. French, J. Mecikalski, R. Torn, G.R. Diak, T.J. Schmugge, and B.C.W. Tanner, 2003. Remote sensing of surface energy fluxes at 10 -1 m pixel resolutions, Water Resources Research, 39(8): 1-18. https://doi.org/10.1029/2002WR001775 

  126. Oh, Y., K. Sarabandi, and F.T. Ulaby, 1992. An empirical model and an inversion technique for radar scattering from bare soil surfaces, IEEE Transactions on Geoscience and Remote Sensing, 30(2): 370-381. https://doi.org/10.1109/36.134086 

  127. Otkin, J.A., M.C. Anderson, C. Hain, I. E. Mladenova, J.B. Basara, and M. Svoboda, 2013. Examining rapid onset drought development using the thermal infrared-based evaporative stress index, Journal of Hydrometeorology, 14(4): 1057-1074. https://doi.org/10.1175/JHM-D-12-0144.1 

  128. Owe, M., R. de Jeu, and J. Walker, 2001. A methodology for surface soil moisture and vegetation optical depth retrieval using the microwave polarization difference index, IEEE Transactions on Geoscience and Remote Sensing, 39(8): 1643-1654. https://doi.org/10.1109/36.942542 

  129. Owe, M., R. de Jeu, and T. Holmes, 2008. Multisensor historical climatology of satellite-derived global land surface moisture, Journal of Geophysical Research: Earth Surface, 113(F1): 1-17. https://doi.org/10.1029/2007JF000769 

  130. Parinussa, R.M., T.R. Holmes, N. Wanders, W.A. Dorigo, and R. A. de Jeu, 2015. A preliminary study toward consistent soil moisture from AMSR2, Journal of Hydrometeorology, 16(2): 932-947. https://doi.org/10.1175/JHM-D-13-0200.1 

  131. Park, J.A. and G.S. Kim, 2011. Estimation of Spatial Distribution of Soil Moisture at Yongdam Dam Watershed Using Artificial Neural Networks, Journal of the Korean Geographical Society, 46(3): 319-330. 

  132. Park, G.H., W.S. Yu, E.H. Hwang, and K.S. Jung, 2020. Calculation of soil moisture and evaporation on the Korean Peninsula using NASA LIS (Land Information System), Journal of the Korean Association of Geographic Information Studies, 23(4): 83-100. https://doi.org/10.11108/kagis.2020.23.4.083 

  133. Park, G., C. Kye, K. Lee, W. Yu, E.-H. Hwang, and D. Kang, 2021a. Calculation of Soil Moisture and Evapotranspiration of KLDAS applying Ground-Observed Meteorological Data, Korean Journal of Remote Sensing, 37(6-1): 1611-1623 (in Korean with English abstract). https://doi.org/10.7780/kjrs.2021.37.6.1.10 

  134. Park, G.H., K.T. Lee, C.W. Kye, W.S. Yu, E.H. Hwang, and D.H. Kang, 2021b. Calculation of Soil Moisture and Evapotranspiration for KLDAS (Korea Land Data Assimilation System) using Hydrometeorological Data Set, Journal of the Korean Association of Geographic Information Studies, 24(4): 65-81. https://doi.org/10.11108/kagis.2021.24.4.065 

  135. Park, I., K.S. Kim, B.C. Han, Y.J. Choung, B.Y. Gu, J.T. Han, and J. Kim, 2021c. A Study for Monitoring Soil Liquefaction Occurred by Earthquakes Using Soil Moisture Indices Derived from the Multi-temporal Landsat Satellite Imagery Acquired in Pohang, South Korea, Journal of the Korean Association of Geographic Information Studies, 24(1): 126-137. https://doi.org/10.11108/kagis.2021.24.1.126 

  136. Parrens, M., J.-P. Wigneron, P. Richaume, A. Al Bitar, A. Mialon, R. Fernandez-Moran, A. Al-Yaari, P. O'Neill, and Y. Kerr, 2017. Considering combined or separated roughness and vegetation effects in soil moisture retrievals, International Journal of Applied Earth Observation and Geoinformation, 55: 73-86. https://doi.org/10.1016/j.jag.2016.11.001 

  137. Petropoulos, G.P., G. Ireland, and B. Barrett, 2015. Surface soil moisture retrievals from remote sensing: Current status, products & future trends, Physics and Chemistry of the Earth, Parts A/B/C, 83: 36-56. https://doi.org/10.1016/j.pce.2015.02.009 

  138. Piles, M., A. Camps, M. Vall-Llossera, I. Corbella, R. Panciera, C. Rudiger, Y.H. Kerr, and J. Walker, 2011. Downscaling SMOS-derived soil moisture using MODIS visible/infrared data, IEEE Transactions on Geoscience and Remote Sensing, 49(9): 3156-3166. https://doi.org/10.1109/TGRS.2011.2120615 

  139. Priestley, C.H.B. and R.J. Taylor, 1972. On the assessment of surface heat flux and evaporation using largescale parameters, Monthly Weather Review, 100(2): 81-92. https://doi.org/10.1175/1520-0493(1972)100 2.3.CO;2 

  140. Reichle, R.H., 2008. Data assimilation methods in the Earth sciences, Advances in Water Resources, 31(11): 1411-1418. https://doi.org/10.1016/j.advwatres.2008.01.001 

  141. Rodell, M., P. Houser, A. Berg, and J. Famiglietti, 2005. Evaluation of 10 methods for initializing a land surface model, Journal of Hydrometeorology, 6(2): 146-155. https://doi.org/10.1175/JHM414.1 

  142. Rodell, M., P. Houser, U. Jambor, J. Gottschalck, K. Mitchell, C.-J. Meng, K. Arsenault, B. Cosgrove, J. Radakovich, and M. Bosilovich, 2004. The global land data assimilation system, Bulletin of the American Meteorological Society, 85(3): 381-394. https://doi.org/10.1175/BAMS-85-3-381 

  143. Roerink, G., Z. Su, and M. Menenti, 2000. S-SEBI: A simple remote sensing algorithm to estimate the surface energy balance, Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, 25(2): 147-157. https://doi.org/10.1016/S1464-1909(99)00128-8 

  144. Running, S.W. and R.R. Nemani, 1988. Relating seasonal patterns of the AVHRR vegetation index to simulated photosynthesis and transpiration of forests in different climates, Remote Sensing of Environment, 24(2): 347-367. https://doi.org/10.1016/0034-4257(88)90034-X 

  145. Running, S.W., Q. Mu, M. Zhao, and A. Moreno, 2017. MODIS global terrestrial evapotranspiration (ET) product (NASA MOD16A2/A3) NASA earth observing system MODIS land algorithm, NASA, Washington, D.C., USA. 

  146. Sandholt, I., K. Rasmussen, and J. Andersen, 2002. A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status, Remote Sensing of Environment, 79(2-3): 213-224. https://doi.org/10.1016/S0034-4257(01)00274-7 

  147. Scott, C.A., W.G. Bastiaanssen, and M.-U.-D. Ahmad, 2003. Mapping root zone soil moisture using remotely sensed optical imagery, Journal of Irrigation and Drainage Engineering, 129(5): 326-335. https://doi.org/10.1061/(ASCE)0733-9437(2003)129:5(326) 

  148. Senay, G.B., M.E. Budde, and J.P. Verdin, 2011. Enhancing the Simplified Surface Energy Balance (SSEB) approach for estimating landscape ET: Validation with the METRIC model, Agricultural Water Management, 98(4): 606-618. https://doi.org/10.1016/j.agwat.2010.10.014 

  149. Sheffield, J., E.F. Wood, M. Pan, H. Beck, G. Coccia, A. Serrat-Capdevila, and K. Verbist, 2018. Satellite remote sensing for water resources management: Potential for supporting sustainable development in data-poor regions, Water Resources Research, 54(12): 9724-9758. https://doi.org/10.1029/2017WR022437 

  150. Shin, S.C., M. Sawamoto, and C.H. Kim, 1995. Estimation of evapotranspiration using NOAA-AVHRR data, Water for Future, 28(1): 71-80. 

  151. Shin, S.-C. and T.-Y. An, 2004. Estimation of areal evapotranspiration using NDVI and temperature data, Journal of the Korean Association of Geographic Information Studies, 7(3): 79-89. 

  152. Shin, S.-C., M.-H. Hwang, I.-H. Ko, and S.-J. Lee, 2006a. Suggestion of simple method to estimate evapotranspiration using vegetation and temperature information, Journal of Korea Water Resources Association, 39(4): 363-372. https://doi.org/10.3741/JKWRA.2006.39.4.363 

  153. Shin, S.C., S. Jeong, K.T. Kim, J.H. Kim, and J.S. Park, 2006b. Drought detection and estimation of water deficit using NDVI, Journal of the Korean Association of Geographic Information Studies, 9(2): 102-114. 

  154. Shin, S.C. and T.Y. An, 2007. Development of estimating method for areal evapotranspiration using satellite data, Journal of the Korean Association of Geographic Information Studies, 10(2): 71-81. 

  155. Shin, H.J., R. Ha, M.J. Park, and S.J. Kim, 2010. Estimation of spatial evapotranspiration using the relationship between MODIS NDVI and morton ET-For Chungjudam watershed, Journal of The Korean Society of Agricultural Engineers, 52(1): 19-24. https://doi.org/10.5389/KSAE.2010.52.1.019 

  156. Shin, Y.C., K.S. Choi, Y.H. Jung, J.E. Yang, and K.J. Lim, 2016a. Soil Moisture Estimation and Drought Assessment at the Spatio-Temporal Scales using Remotely Sensed Data: (I) Soil Moisture, Journal of Korean Society on Water Environment, 32(1): 60-69. https://doi.org/10.15681/KSWE.2016.32.1.60 

  157. Shin, Y.C., K.S. Choi, Y.H. Jung, J.E. Yang, and K.J. Lim, 2016b. Soil Moisture Estimation and Drought Assessment at the Spatio-Temporal Scales using Remotely Sensed Data: (II) Drought, Journal of Korean Society on Water Environment, 32(1): 70-79. https://doi.org/10.15681/KSWE.2016.32.1.60 

  158. Shin, Y., T. Lee, S. Kim, H.-W. Lee, K.-S. Choi, J. Kim, and G. Lee, 2017. Development of Agricultural Drought Assessment Approach Using SMAP Soil Moisture Footprints, Journal of The Korean Society of Agricultural Engineers, 59(1): 57-70. https://doi.org/10.5389/KSAE.2017.59.1.057 

  159. Shuttleworth, W.J. and J. Wallace, 1985. Evaporation from sparse crops-an energy combination theory, Quarterly Journal of the Royal Meteorological Society, 111(469): 839-855. https://doi.org/10.1002/qj.49711146910 

  160. Shuttleworth, W.J. and R.J. Gurney, 1990. The theoretical relationship between foliage temperature and canopy resistance in sparse crops, Quarterly Journal of the Royal Meteorological Society, 116(492): 497-519. https://doi.org/10.1002/qj.49711649213 

  161. Su, Z., 2002. The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes, Hydrology and Earth System Sciences, 6(1): 85-100. https://doi.org/10.5194/hess-6-85-2002 

  162. Sugita, M. and W. Brutsaert, 1991. Daily evaporation over a region from lower boundary layer profiles measured with radiosondes, Water Resources Research, 27(5): 747-752. https://doi.org/10.1029/90WR02706 

  163. Sun, D. and M. Kafatos, 2007. Note on the NDVI-LST relationship and the use of temperature-related drought indices over North America, Geophysical Research Letters, 34(24): 1-4. https://doi.org/10.1029/2007GL031485 

  164. Sunwoo, W.Y., D.E. Kim, S.H. Hwang, and M.H. Choi, 2014. Analysis of Regional Antecedent Wetness Conditions Using Remotely Sensed Soil Moisture and Point Scale Rainfall Data, Korean Journal of Remote Sensing, 30(5): 587-596 (in Korean with English abstract). https://doi.org/10.7780/kjrs.2014.30.5.4 

  165. Sur, C.Y. and M.H. Choi, 2011. An intercomparison of two satellite data-based evapotranspiration approaches, Korean Wetlands Society, 13(3): 471-479. https://doi.org/10.17663/JWR.2011.13.3.471 

  166. Sur, C.Y., S.J. Han, J.H. Lee, and M.H. Choi, 2012a. Estimation of Satellite-based Spatial Evapotranspiration and Validation of Fluxtower Measurements by Eddy Covariance Method, Korean Journal of Remote Sensing, 28(4): 435-448 (in Korean with English abstract). https://doi.org/10.7780/kjrs.2012.28.4.7 

  167. Sur, C.Y., J.J. Lee, J.Y. Park, and M.H. Choi, 2012b. Spatial Estimation of Priestley-Taylor Based Potential Evapotranspiration Using MODIS Imageries: the Nak-dong river basin, Korean Journal of Remote Sensing, 28(5): 521-529 (in Korean with English abstract). https://doi.org/10.7780/kjrs.2012.28.5.5 

  168. Tsang, L., J.A. Kong, and R.T. Shin, 1985. Theory of microwave remote sensing, John Wiley, Hoboken, NJ, USA. 

  169. Ulaby, F.T., R.K. Moore, and A.K. Fung, 1982. Microwave remote sensing active and passive Volume 2-Radar remote sensing and surface scattering and emission theory, Addison-Wesley, Boston, MA, USA, pp. 848-902. 

  170. Ulaby, F.T., R.K. Moore, and A.K. Fung, 1986. Microwave remote sensing: Active and passive, Artech House, Norwood, MA, USA. 

  171. Verstraeten, W.W., F. Veroustraete, and J. Feyen, 2008. Assessment of evapotranspiration and soil moisture content across different scales of observation, Sensors, 8(1): 70-117. https://doi.org/10.3390/s8010070 

  172. Wagner, W., 1998. Soil moisture retrieval from ERS scatterometer data, Vienna University of Technology, Vienna, Austria. 

  173. Wagner, W., G. Lemoine, and H. Rott, 1999. A method for estimating soil moisture from ERS scatterometer and soil data, Remote Sensing of Environment, 70(2): 191-207. https://doi.org/10.1016/S0034-4257(99)00036-X 

  174. Wagner, W., S. Hahn, R. Kidd, T. Melzer, Z. Bartalis, S. Hasenauer, J. Figa, P. De Rosnay, A. Jann, and S. Schneider, 2013. The ASCAT Soil Moisture Product: A Review of its, Meteorologische Zeitschrift, 22(1): 1-29. https://doi.org/10.1127/0941-2948/2013/0399 

  175. Wang, J.R. and T.J. Schmugge, 1980. An empirical model for the complex dielectric permittivity of soils as a function of water content, IEEE Transactions on Geoscience and Remote Sensing, GE-18(4): 288-295. https://doi.org/10.1109/TGRS.1980.350304 

  176. Waters, R., R. Allen, W. Bastiaanssen, M. Tasumi, and R. Trezza, 2002. SEBAL-Surface Energy Balance Algorithms for Land, Idaho Implementation, Advanced Training and Users Manual, University of Idaho, Moscow, ID, USA. 

  177. Wigneron, J.-P., J.-C. Calvet, T. Pellarin, A. A. Van de Griend, M. Berger, and P. Ferrazzoli, 2003. Retrieving near-surface soil moisture from microwave radiometric observations: current status and future plans, Remote Sensing of Environment, 85(4): 489-506. https://doi.org/10.1016/S0034-4257(03)00051-8 

  178. Wright, J.L., 1982. New evapotranspiration crop coefficients, Journal of the Irrigation and Drainage Division, 108(1): 57-74. https://doi.org/10.1061/JRCEA4.0001372 

  179. Yao, Y., S. Liang, J. Cheng, S. Liu, J.B. Fisher, X. Zhang, K. Jia, X. Zhao, Q. Qin, B. Han, S. Han, G. Zhou, G. Zhou, Y. Li, and S. Zhao, 2013. MODIS-driven estimation of terrestrial latent heat flux in China based on a modified Priestley-Taylor algorithm, Agricultural and Forest Meteorology, 171: 187-202. https://doi.org/10.1016/j.agrformet.2012.11.016 

  180. Yoo, J.W., 2003. The Estimation of Evapotranspiration with SEBAL Model in the Geumgang Upper Basin, Korea, Seoul National University, Seoul, Republic of Korea. 

  181. Yoon, D.H., W.H. Nam, H.J. Lee, E.M. Hong, T.G. Kim, D.E. Kim, A.K. Shin, and M.D. Svoboda, 2018. Application of evaporative stress index (ESI) for satellite-based agricultural drought monitoring in South Korea, Journal of the Korean Society of Agricultural Engineers, 60(6): 121-131. https://doi.org/10.5389/KSAE.2018.60.6.121 

  182. Yoon, D.H., W.H. Nam, H.J. Lee, E.M. Hong, and T.G. Kim, 2020. Drought Hazard Assessment using MODIS-based Evaporative Stress Index (ESI) and ROC Analysis, Journal of The Korean Society of Agricultural Engineers, 62(3): 51-61. https://doi.org/10.5389/KSAE.2020.62.3.051 

  183. Van Dam, J.C., J. Huygen, J. Wesseling, R. Feddes, P. Kabat, P. Van Walsum, P. Groenendijk, and C. Van Diepen, 1997. Theory of SWAP version 2.0; Simulation of water flow, solute transport and plant growth in the Soil-Water-Atmosphere-Plant environment, DLO Winand Staring Centre, Wageningen, Netherlands. 

  184. Zhang, K., J.S. Kimball, and S.W. Running, 2016. A review of remote sensing based actual evapotranspiration estimation, Wiley Interdisciplinary Reviews: Water, 3(6): 834-853. https://doi.org/10.1002/wat2.1168 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로