$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

배양육 조직구현을 위한 배향성 부여에 관한 연구
A Study on Conferring Orientation to Myoblast for Realizing Tissue of Cultured Meat 원문보기

韓國染色加工學會誌 = Textile coloration and finishing, v.34 no.4, 2022년, pp.284 - 301  

석용주 (영남대학교 화학공학부) ,  조선미 (영남대학교 화학공학부) ,  최순모 (영남대학교 세포배양연구소) ,  한성수 (영남대학교 화학공학부)

Abstract AI-Helper 아이콘AI-Helper

The limitations of food production caused by global warming, consumption of soil fertility, and land shortage have demanded the development of alternative foods. Their market has been increasing, and in particular, there is an urgent need for an alternative meat. Among them, the non-slaughtered cell...

주제어

표/그림 (16)

AI 본문요약
AI-Helper 아이콘 AI-Helper

문제 정의

  • 본 리뷰논문에서는 근아세포에 배향성을 부여하기 위한 방법 가운데, 섬유형 지지체를 통한 배양육의 제조를 위해 이전 선행되었던, 근조직 재생용 섬유형 지지체 제조 방법에 초점을 두고 다루고자 한다.
  • 현재까지 개발되어온 지지체의 제조법은 기존에 선행되어 왔던 섬유의 방사와 방직(용융 방사, 건조 방사, 습식 방사, 전기 방사, 접촉 방사)부터 시작하여 최근의 3D 프린팅까지 다양한 방법이 있다. 우리는 이러한 섬유형 지지체를 통한 지지체 내부의 미시적, 거시적 배향을 통한 세포의 정렬 방법에 대해서 말하고자 한다.
본문요약 정보가 도움이 되었나요?

참고문헌 (40)

  1. K. Sakadevan and M. L. Nguyen, Livestock Production and its Impact on Nutrient Pollution and Greenhouse Gas Emissions, Advances in Agronomy, 141, 147(2017). 

  2. Z. F. Bhat, H. Bhat, and S. Kumar, "Cultured Meat-A Humane Meat Production System", Principles of Tissue Engineering, Academic Press, USA, pp.1369-1388, 2020. 

  3. S. H. Park, S. W. Jung, M. H. Choi, M. L. Lee, B. G. Choi, and W. G. Koh, Gelatin MAGIC Powder as Nutrient-Delivering 3D Spacer for Growing Cell Sheets into Cost-Effective Cultured Meat, Biomaterials, 278, 121155 (2021). 

  4. S. Verbruggen, D. Luining, A. van Essen, and M. J. Post, Bovine Myoblast Cell Production in a Microcarriers-based System, Cytotechnology, 70(2), 503(2018). 

  5. S. H. Park, S. W. Jung, J. W. Heo, W. G. Koh, S. M. Lee, and J. K. Hong, Chitosan/Cellulose-Based Porous Nanofilm Delivering C-Phycocyanin: A Novel Platform for the Production of Cost-Effective Cultured Meat, ACS Applied Materials and Interfaces, 13(27), 32193(2021). 

  6. A. Shahin-Shamsabadi and P. R. Selvaganapathy, Engineering Murine Adipocytes and Skeletal Muscle Cells in Meat-Like Constructs Using Self-Assembled Layer-by-Layer Bio-fabrication: A Platform for Development of Cultivated Meat, Cells Tissues Organs, 211(3), 304(2022). 

  7. C. Bomkamp, S. C. Skaalure, G. F. Fernando, T. Ben-Arye, E. W. Swartz, and E. A. Specht, Scaffolding Biomaterials for 3D Cultivated Meat: Prospects and Challenges, Advanced Science, 9(3), 2102908(2022). 

  8. T. Ben-Arye, Y. Shandalov, S. Ben-Shaul, S. Landau, Y. Zagury, I. Ianovici, N. Lavon, and S. Levenberg, Extured Soy Protein Scaffolds Enable the Generation of Three-Dimensional Bovine Skeletal Muscle Tissue for Cell-Based Meat, Nature Food, 1(4), 210(2020). 

  9. M. Beldjilali-Labro, A. G. Garcia, F. Farhat, F. Bedoui, J. F. Grosset, M. Dufresne, and C. Legallais, Biomaterials in Tendon and Skeletal Muscle Tissue Engineering: Current Trends and Challenges, Materials, 11(7), 1116(2018). 

  10. S. Ostrovidov, S. Salehi, M. Costantini, K. Suthiwanich, M. Ebrahimi, R. B. Sadeghian, T. Fujie, X. Shi, S. Cannata, C. Gargioli, A. Tamayol, M. R. Dokmeci, G. Orive, W. Swieszkowski, and A. Khademhosseini, 3D Bioprinting in Skeletal Muscle Tissue Engineering, Small, 15(24), 1805530 (2019). 

  11. E. Alarcin, A. Bal-Ozturk, H. Avci, H. Ghorbanpoor, F. D. Guzel, A. Akpek, G. Yesiltas, T. Canak-Ipek, and M. Avci-Adali, Current Strategies for the Regeneration of Skeletal Muscle Tissue, International Journal of Molecular Sciences, 22(11), 5929(2021). 

  12. N. Haghighipour, S. Heidarian, M. M. A. Shokrgozar, and N. Amirizadeh, Differential Effects of Cyclic Uniaxial Stretch on Human Mesenchymal Stem Cell into Skeletal Muscle Cell, Cell Biology International, 36(7), 669(2012). 

  13. J. Canicio, P. Ruiz-Lozano, M. Carrasco, M. Palacin, K. Chien, A. Zorzano, and P. Kaliman, Nuclear Factor κB-inducing Kinase and IκB Kinase-α Signal Skeletal Muscle Cell Differentiation, Journal of Biological Chemistry, 276(23), 20228(2001). 

  14. J. Krieger, B. W. Park, C. R. Lambert, and C. Malcuit, 3D Skeletal Muscle Fascicle Engineering is Improved with TGF-β1 Treatment of Myogenic Cells and their Co-culture with Myofibroblasts, PeerJ, 6, e4939(2018). 

  15. H. Takahashi, A. Yoshida, B. Gao, K. Yamanaka, and T. Shimizu, Harvest of Quality-controlled Bovine Myogenic Cells and Biomimetic Bovine Muscle Tissue Engineering for Sustainable Meat Production, Biomaterials, 287, 121649 (2022). 

  16. C. Mueller, M. Trujillo-Miranda, M. Maier, D. E. Heath, A. J. O'Connor, and S. Salehi, Effects of External Stimulators on Engineered Skeletal Muscle Tissue Maturation, Advanced Materials Interfaces, 8(1), 2001167(2021). 

  17. K. Lu, Y. Qian, J. Gong, Z. Zhu, J. Yin, L. Ma, M. Yu, and H. Wang, Biofabrication of Aligned Structures that Guide Cell Orientation and Applications in Tissue Engineering, Bio-Design and Manufacturing, 4(2), 258(2021). 

  18. B. Ferrigno, R. Bordett, N. Duraisamy, J. Moskow, M. R. Arul, S. Rudraiah, S. P. Nukavarapu, A. T. Vella, and S. G. Kumbar, Bioactive Polymeric Materials and Electrical Stimulation Strategies for Musculoskeletal Tissue Repair and Regeneration, Bioactive Materials, 5(3), 468(2020). 

  19. D. Pajalunga and M. Crescenzi, Restoring the Cell Cycle and Proliferation Competence in Terminally Differentiated Skeletal Muscle Myotubes, Cells, 10(10), 2753(2021). 

  20. T. L. Jenkins and D. Little, Synthetic Scaffolds for Musculoskeletal Tissue Engineering: Cellular Responses to Fiber Parameters, NPJ Regenerative Medicine, 4(1), 1(2019). 

  21. G. Jin, R. He, B. Sha, W. Li, H. Qing, R. Teng, and F. Xu, Electrospun Three-dimensional Aligned Nanofibrous Scaffolds for Tissue Engineering, Materials Science and Engineering: C, 92, 995(2018). 

  22. Y. Liu, N. Fang, B. Liu, L. Song, B. Wen, and D. Yang, Aligned Porous Chitosan/Graphene Oxide Scaffold for Bone Tissue Engineering, Materials Letters, 233, 78(2018). 

  23. D. Gholobova, L. Terrie, M. Gerard, H. Declercq, and L. Thorrez, Scularization of Tissue-Engineered Skeletal Muscle Constructs, Biomaterials, 235, 119708(2020). 

  24. L. Shang, Y. Yu, Y. Liu, Z. Chen, T. Kong, and Y. Zhao, Spinning and Applications of Bioinspired Fiber Systems, ACS Nano, 13(3), 2749(2019). 

  25. K. A. V. Kampen, J. Fernandez-Perez, M. Baker, C. Mota, and L. Moroni, Fabrication of a Mimetic Vascular Graft Using Melt Spinning with Tailorable Fiber Parameters, Biomaterials Advances, 139, 212972(2022). 

  26. W. Huang, X. Huang, P. Wang, and P. Chen, Poly(glycolic acid) Nanofibers via Sea-Island Melt-Spinning, Macromolecular Materials and Engineering, 303(12), 1800425(2018). 

  27. K. S. Koeck, S. Salehi, M. Humenik, and T. Scheibel, Processing of Continuous Non-Crosslinked Collagen Fibers for Microtissue Formation at the Muscle-Tendon Interface, Advanced Functional Materials, 32(15), 2112238(2022). 

  28. L. A. MacQueen, C. G. Alver, C. O. Chantre, S. Ahn, L. Cera, G. M. Gonzalez, B. B. O'Connor, D. J. Drennan, M. M. Peters, S. E. Motta, J. F. Zimmerman, and K. K. Parker, Muscle Tissue Engineering in Fibrous Gelatin: Implications for Meat Analogs, NPJ Science of Food, 3(1), 1(2019). 

  29. A. F. Quigley, R. Cornock, T. Mysore, J. Foroughi, M. Kita, J. M. Razal, J. Crook, S. E. Moulton, G. G. Wallace, and R. M. I. Kapsa, Wet-spun Trojan Horse Cell Constructs for Engineering Muscle, Frontiers in Chemistry, 8, 18(2020). 

  30. C. Zhang, Y. Zhang, H. Shao, and X. Hu, Hybrid Silk Fibers Dry-spun from Regenerated Silk Fibroin/Graphene Oxide Aqueous Solutions, ACS Applied Materials and Interfaces, 8(5), 3349(2016). 

  31. M. J. Yeo and G. H. Kim, Nano/Microscale Topographically Designed Alginate/PCL Scaffolds for Inducing Myoblast Alignment and Myogenic Differentiation, Carbohydrate Polymers, 223, 115041(2019). 

  32. N. Narayanan, C. Jiang, C. Wang, G. Uzunalli, N. Whittern, D. Chen, O. G. Jones, S. Kuang, and M. Deng, Harnessing Fiber Diameter-dependent Effects of Myoblasts Toward Biomimetic Scaffold-based Skeletal Muscle Regeneration, Frontiers in Bioengineering and Biotechnology, 8, 203(2020). 

  33. M. J. Yeo and G. H. Kim, Micro/Nno-hierarchical Scaffold Fabricated Using a Cell Electrospinning/3D Printing Process for Co-culturing Myoblasts and HUVECs to Induce Myoblast Alignment and Differentiation, Acta Biomaterialia, 107, 102(2020). 

  34. D. Dippold, A. Cai, M. Hardt, A. R. Boccaccini, R. E. Horch, J. P. Beier, and D. W. Schubert, Investigation of the Batch-to-batch Inconsistencies of Collagen in PCL Collagen Nanofibers, Materials Science and Engineering C, 95, 217(2019). 

  35. J. U. Gomez, A. P. Murcia, A. Shukla, H. Alkhamis, S. Salehi, and L. Ionov, Soft Elastic Fibrous Scaffolds for Muscle Tissue Engineering by Touch Spinning, Applied Bio Materials, 4, 5585(2021). 

  36. J. U. Gomez, D. Schonfeld, A. P. Murcia, M. M. Roland, A. Caspari, A. Synytska, S. Salehi, T. Pretsch, and L. Ionov, Fibrous Scaffolds for Muscle Tissue Engineering Based on Touch-Spun Poly(Ester-Urethane) Elastomer, Macro Molecular, 22, 2100427(2022). 

  37. M. Gasparotto, P. Bellet, G. Scapin, R. Busetto, C. Rampazzo, L. Vitiello, D. I. Shah, and F. Filippini, 3D Printed Graphene-PLA Scaffolds Promote Cell Alignment and Differentiation, International Journal of Molecular Sciences, 23(3), 1736(2022). 

  38. J. Y. Kim, W. J. Kim, and G. H. Kim, Scaffold with Micro/Nanoscale Topographical Cues Fabricated Using E-field assisted 3D Printing Combined with Plasma-Etching for Enhancing Myoblast Alignment and Differentiation, Applied Surface Science, 509, 145404(2020). 

  39. W. J. Kim and G. H. Kim, A Functional Bioink and its Application in Myoblast Alignment and Differentiation, Chemical Engineering Journal, 366, 150(2019). 

  40. W. J. Kim and G. H. Kim, 3D Bioprinting of Functional Cell-laden Bioinks and its Application for Cell-Alignment and Maturation, Applied Materials Today, 19, 100588(2020). 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

FREE

Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로