$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

검증데이터 기반의 차별화된 이상데이터 처리를 통한 데이터 불균형 해소 방법
Resolving data imbalance through differentiated anomaly data processing based on verification data 원문보기

지능정보연구 = Journal of intelligence and information systems, v.28 no.4, 2022년, pp.179 - 190  

황철현 (한양여자대학교 빅데이터과)

초록
AI-Helper 아이콘AI-Helper

데이터 불균형은 한 분류의 데이터 수가 다른 분류에 비해 지나치게 크거나 작은 현상을 의미하며. 이로 인해 분류 알고리즘을 활용하는 기계학습에서 성능을 저하시키는 주요 요인으로 제기되고 있다. 데이터 불균형 문제 해결을 위해서 소수 분포 데이터를 증폭하는 다양한 오버 샘플링(Over Sampling) 방법들이 제안되고 있다. 이 가운데 SMOTE는 가장 대표적인 방법으로 소수 분포 데이터의 증폭 효과를 극대화하기 위해 데이터에 포함된 잡음을 제거(SMOTE-IPF)하거나, 경계선만을 강화(Borderline SMOTE) 시키는 다양한 방법들이 출현하였다. 이 논문은 소수분류 데이터를 증폭하는 전통적인 SMOTE 방법에서 이상데이터(Anomaly Data)에 대한 처리방법개선을 통해 궁극적으로 분류성능을 높이는 방법을 제안한다. 제안 방법은 실험을 통해 기존 방법에 비해 상대적으로 높은 분류성능을 일관성 있게 제시하였다.

Abstract AI-Helper 아이콘AI-Helper

Data imbalance refers to a phenomenon in which the number of data in one category is too large or too small compared to another category. Due to this, it has been raised as a major factor that deteriorates performance in machine learning that utilizes classification algorithms. In order to solve the...

주제어

표/그림 (9)

참고문헌 (17)

  1. Ali, H., Salleh, M. N. M., Saedudin, R., Hussain, K., & Mushtaq, M. F. (2019). Imbalance class problems in data mining: a review. Indonesian Journal of Electrical Engineering and Computer Science, 14(3), 1560-1571. 

  2. Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: synthetic minority over-sampling technique. Journal of artificial intelligence research, 16, 321-357. 

  3. Cheng, K., Zhang, C., Yu, H., Yang, X., Zou, H., & Gao, S. (2019). Grouped SMOTE with noise filtering mechanism for classifying imbalanced data. IEEE Access, 7, 170668-170681. 

  4. Choi, N., & Kim, W. (2019). Anomaly Detection for User Action with Generative Adversarial Networks. Journal of Intelligence and Information Systems, 25(3), 43-62. 

  5. Cortez, P., & Silva, A. M. G. (2008). Using data mining to predict secondary school student performance. 

  6. Ester, M., Kriegel, H. P., Sander, J., & Xu, X. (1996). A density-based algorithm for discovering clusters in large spatial databases with noise. in: Proceedings of Second International Conference on Knowledge Discovery and Data Mining, Portland, OR, 226-231. 

  7. Fernandez, A., Garcia, S., Herrera, F., & Chawla, N. V. (2018). SMOTE for learning from imbalanced data: progress and challenges, marking the 15-year anniversary. Journal of artificial intelligence research, 61, 863-905. 

  8. Gazzah, S., & Amara, N. E. B. (2008, September). New oversampling approaches based on polynomial fitting for imbalanced data sets. In 2008 the eighth iapr international workshop on document analysis systems (pp. 677-684). IEEE. 

  9. Ghorbani, R., & Ghousi, R. (2020). Comparing different resampling methods in predicting students' performance using machine learning techniques. IEEE Access, 8, 67899-67911. 

  10. Han, H., Wang, W. Y., & Mao, B. H. (2005, August). Borderline-SMOTE: a new over-sampling method in imbalanced data sets learning. In International conference on intelligent computing (pp. 878-887). Springer, Berlin, Heidelberg. 

  11. Krawczyk, B. (2016). Learning from imbalanced data: open challenges and future directions. Progress in Artificial Intelligence, 5(4), 221-232. 

  12. Lee, D., & Kim, N. (2022). Anomaly Detection Methodology Based on Multimodal Deep Learning. Journal of Intelligence and Information Systems, 28(2), 101-125. 

  13. Nguyen, H. D., Tran, K. P., Thomassey, S., & Hamad, M. (2021). Forecasting and Anomaly Detection approaches using LSTM and LSTM Autoencoder techniques with the applications in supply chain management. International Journal of Information Management, 57, 102282. 

  14. Saez, J. A., Luengo, J., Stefanowski, J., & Herrera, F. (2015). SMOTE-IPF: Addressing the noisy and borderline examples problem in imbalanced classification by a re-sampling method with filtering. Information Sciences, 291, 184-203. 

  15. Serradilla, O., Zugasti, E., Ramirez de Okariz, J., Rodriguez, J., & Zurutuza, U. (2021). Adaptable and explainable predictive maintenance: Semi-supervised deep learning for anomaly detection and diagnosis in press machine data. Applied Sciences, 11(16), 7376. 

  16. Shin, B., Lee, J., Han, S., & Park, C.-S. (2021). A Study of Anomaly Detection for ICT Infrastructure using Conditional Multimodal Autoencoder. Journal of Intelligence and Information Systems, 27(3), 57-73. 

  17. Wu, G., & Chang, E. Y. (2003, August). Class-boundary alignment for imbalanced dataset learning. In ICML 2003 workshop on learning from imbalanced data sets II, Washington, DC (pp. 49-56). 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로