$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Application of YOLOv5 Neural Network Based on Improved Attention Mechanism in Recognition of Thangka Image Defects 원문보기

KSII Transactions on internet and information systems : TIIS, v.16 no.1, 2022년, pp.245 - 265  

Fan, Yao (School of Information Engineering, Xizang Minzu University) ,  Li, Yubo (School of Information Engineering, Xizang Minzu University) ,  Shi, Yingnan (School of Information Engineering, Xizang Minzu University) ,  Wang, Shuaishuai (School of Information Engineering, Xizang Minzu University)

Abstract AI-Helper 아이콘AI-Helper

In response to problems such as insufficient extraction information, low detection accuracy, and frequent misdetection in the field of Thangka image defects, this paper proposes a YOLOv5 prediction algorithm fused with the attention mechanism. Firstly, the Backbone network is used for feature extrac...

주제어

표/그림 (24)

AI 본문요약
AI-Helper 아이콘 AI-Helper

제안 방법

  • Aiming at resolving the problems of difficult feature extraction and low detection accuracy concerning defective Thangka images with complex background color, this paper has proposed an improved YOLOv5 model based on attention mechanism to detect the defect area in Thangka images. The model integrated SE and CBAM mechanisms respectively, and thus obtained two improved algorithms, YOLOv5-SE and YOLOv5-CBAM, which have effectively solved the problems encountered in Thangka image defect detection.
  • Due to the special data set of this experiment and the small number of initial data, the training effect was not very obvious. Therefore, the data set was expanded by the method of data enhancement, which increased not only the number of data sets, but also the diversity of the training data, thereby making the data training achieve better results.

대상 데이터

  • Consequently, image collection and processing has become an important part of this experiment. The data used in this paper came from the Thangka pictures taken in Tibet. Thangka images with defects were selected from the acquired data set of 5277 Thangka images.

이론/모형

  • This paper used the labeling tool of LabelImg to label the Thangka data sets and classify the defect area. There are five types of defect targets: fade, crack, dent, damage, and stain.
본문요약 정보가 도움이 되었나요?

참고문헌 (23)

  1. L. Li, "Tibetan Buddhist Thangka Art," Journal of Kangding Nationaly Teachers College, no. 01, pp. 13-16, 2008. 

  2. L. Jie, "Research and implementation of Thang-ga image inpainting system based on deep learning," Ningxia University, 2020. 

  3. Zhao Z., Li B., Dong R., Zhao P, "A Surface Defect Detection Method Based on Positive Samples," in Proc. of Pacific Rim International Conference on Artificial Intelligence (PRICAI 2018), Nanjing, China, vol. 11013, pp. 473-481, 2018. 

  4. M. Shuang, W. Yudan, and W. Guojun, "Automatic Fabric Defect Detection with a Multi-Scale Convolutional Denoising Autoencoder Network Model," Journal of Sensors, Basel, Switzerland, vol. 18, no. 4, 2018. 

  5. Z. Xu and H. Dingjiang, "Defect detection on aluminum surfaces based on deep learning," Journal of East China Normal University (Natural Science Edition), no. 06, pp. 105-114, 2020. 

  6. C. Conghan, "Application of deep neural network based on YOLOv3 in aircraft surface defect recognition, " Civil Aviation Flight University of China, vol. 10, 2020. 

  7. X. Yingying, L. Dawei, X. Qian, W. Qiaoyun, and W. Jun, "Automatic defect detection and segmentation of tunnel surface using modified Mask R-CNN," Journal of Measurement, vol. 178, 2021. 

  8. W. Qingxia, Y. Ronghui, W. Chongjun, and L. Yao, "An effective defect detection method based on improved Generative Adversarial Networks (iGAN) for machined surfaces," Journal of Journal of Manufacturing Processes, vol. 65, no. 5, pp. 373-381, 2021. 

  9. Y. J. Cha, W. Choi, G. Suh, S. Mahmoudkhani, and O. Buyukozturk, "Autonomous Structural Visual Inspection Using Region-Based Deep Learning for Detecting Multiple Damage Types," Special Issue: Health Monitoring of Structures, vol. 33, no. 9, pp. 731-747, 2018. 

  10. D. Tabernik, S. Sela, J. Skvarc, and D. Skocaj, "Segmentation-based deep-learning approach for surface-defect detection," Journal of Journal of Intelligent Manufacturing, vol. 31, no. 3, pp. 759-776, 2020. 

  11. K. He, G. Gkioxari, P. Dollar, R. Girshick, "Mask R-CNN," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 42, no. 2, pp. 386-397, 2020. 

  12. Wang, T., Chen, Y., Qiao, M. et al., "A fast and robust convolutional neural network-based defect detection model in product quality control," Int J Adv Manuf Technol, vol. 94, pp. 3465-3471, 2018. 

  13. J. Chen, Z. Liu, H. Wang, A. Nunez, Z. Han, "Automatic Defect Detection of Fasteners on the Catenary Support Device Using Deep Convolutional Neural Network," IEEE Transactions on Instrumentation and Measurement, vol. 67, no. 2, pp. 257-269, 2018. 

  14. S. Mei, H. Yang, Z. Yin, "An Unsupervised-Learning-Based Approach for Automated Defect Inspection on Textured Surfaces," IEEE Transactions on Instrumentation and Measurement, vol. 67, no. 6, pp. 1266-1277, 2018. 

  15. C. Feng, M. Y. Liu, C. C. Kao, and T. Y. Lee, "Deep Active Learning for Civil Infrastructure Defect Detection and Classification," in Proc. of ASCE International Workshop on Computing in Civil Engineering, 2017. 

  16. Lei et al., "Scale insensitive and focus driven mobile screen defect detection in industry," Neurocomputing, vol. 294, pp. 72-81, 2018. 

  17. D. Tabernik, S. Ela, J. Skvar, and D. J. J. o. I. M. Skoaj, "Segmentation-based deep-learning approach for surface-defect detection," Journal of Intelligent Manufacturing, vol. 31, pp. 759-776, 2020. 

  18. H. Rezatofighi, N. Tsoi, J. Gwak, A. Sadeghian, and S. Savarese, "Generalized Intersection Over Union: A Metric and a Loss for Bounding Box Regression," in Proc. of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2019), Long Beach, CA, USA, pp. 658-666, 2019. 

  19. D. Oro, C. Fernandez, X. Martorell, and J. Hernando, "Work-efficient parallel non-maximum suppression for embedded GPU architectures," in Proc. of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Shanghai, China, pp. 1026-1030, 2016. 

  20. J. Hu, L. Shen, S. Albanie, G. Sun and E. Wu, "Squeeze-and-Excitation Networks," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 42, no. 8, pp. 2011-2023, 1 Aug. 2020. 

  21. Woo S., Park J., Lee JY., Kweon I.S, "CBAM: Convolutional Block Attention Module," in Proc. of the European Conference On Computer Vision (ECCV 2018), Munich, Germany, vol. 11211, pp. 3-19, 2018. 

  22. Jiang, B., Luo, R., Mao, J., Xiao, T., & Jiang, Y, "Acquisition of localization confidence for accurate object detection," in Proc. of the European Conference on Computer Vision (ECCV 2018), Munich, Germany, vol. 11218, pp. 816-832, 2018. 

  23. Zheng, Z., Wang, P., Liu, W., Li, J., Ye, R., & Ren, D, "Distance-IoU loss: Faster and better learning for bounding box regression," in Proc. of the AAAI Conference on Artificial Intelligence, vol. 34, no. 07, pp. 12993-13000, 2020. 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로