$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

곤충 면역반응을 중개하는 프로스타글란딘의 분자적 기작과 해충방제 응용
Molecular Action of Prostaglandin to Mediate Insect Immunity and Its Application to Develop Novel Insect Control Techniques 원문보기

한국응용곤충학회지 = Korean journal of applied entomology, v.61 no.1, 2022년, pp.173 - 195  

김용균 (안동대학교 생명과학대학 식물의학과)

초록
AI-Helper 아이콘AI-Helper

척추동물과 유사하게 곤충도 인지질분해효소(phospholipase A2)의 촉매 작용으로 다양한 아이코사노이드를 합성한다. 그러나 일련의 아이코사노이드 생합성과정은 척추동물과 차이를 보이는데, 이는 곤충의 인지질에는 전구물질인 아라키도닉산의 함량이 낮기 때문이다. 대신에 비교적 풍부하게 존재하는 다가불포화지방산인 리놀레익산을 기반으로 사슬 연장 및 불포화반응으로 아라키도닉산을 합성하여 척추동물과 같이 아이코사노이드 전구물질로 이용하는 것 같다. 이렇게 해서 형성된 아라키도닉산은 다시 척추동물의 cyclooxygenase와 유사한 peroxynectin이 PGH2 형태의 프로스타글란딘(prostaglandin: PG) 전구물질을 형성하게 된다. 이후 여러 이성체 효소들의 특이적 반응에 의해 PGA2, PGD2, PGE2, PGI2, TXB2의 다양한 PG가 생성된다. 반면에 또 다른 형태의 아이코사노이드인 에폭시아이코사트리에노익산(epoxyeicosatrienoic acid: EET)은 척추동물과 유사한 단일산화효소의 산화반응으로 아라키도닉산을 전구물질로 5,6-EET, 8,9-EET, 11,12-EET, 14,15-EET를 형성하게 된다. 그러나 세 번째 아이코사노이드 부류인 류코트리엔(leukotriene)의 경우 곤충 체내 존재는 확인되었지만 생합성 과정은 아직 밝혀지지 않았다. 이들 아이코사노이드가 곤충의 대사, 배설, 면역 및 생식에 관여하는 생리작용을 중개한다. 따라서 아이코사노이드 생합성 과정을 교란하는 물질 탐색은 새로운 살충제 개발 전략이 된다. 본 종설은 이 가운데 PG의 곤충 면역 중개 기작을 소개한다.

Abstract AI-Helper 아이콘AI-Helper

Like vertebrates, insects synthesize various eicosanoids after the committed catalytic step of phospholipase A2 (PLA2). However, the subsequent biosynthetic steps exhibit some deviation from those of vertebrates. Due to little composition of arachidonic acid in insect phospholipids, PLA2 releases li...

주제어

표/그림 (9)

참고문헌 (126)

  1. Ahmed, S., Kim, Y., 2019. PGE 2 mediates cytoskeletal rearrangement of hemocytes via Cdc42, a small G protein, to activate actin-remodeling factors in Spodoptera exigua (Lepidoptera: Noctuidae). Arch. Insect Biochem. Physiol. 102, e21607. 

  2. Ahmed, S., Kim, Y., 2020. Prostaglandin catabolism in Spodoptera exigua, a lepidopteran insect. J. Exp. Biol. 223, jeb233221. 

  3. Ahmed, S., Kim, Y., 2021. PGE 2 mediates hemocyte-spreading behavior by activating aquaporin via cAMP and rearranging actin cytoskeleton via Ca 2+ . Dev. Comp. Immunol. 125, 104230. 

  4. Ahmed, S., Stanley, D., Kim, Y., 2018. An insect prostaglandin E 2 synthase acts in immunity and reproduction. Front. Physiol. e01231. 

  5. Ahmed, S., Hasan, A., Kim, Y., 2019. Overexpression of PGE 2 synthase by in vivo transient expression enhances immunocompetency along with fitness cost in a lepidopteran insect. J. Exp. Biol. 222, jeb207019. 

  6. Ahmed, S., Al Baki, M.A., Lee, J., Seo, D.Y., Lee, D., Kim, Y., 2021. The first report of prostacyclin and its physiological roles in insects. Gen. Comp. Endocrinol. 301, 113659. 

  7. Al Baki, M.A., Roy, C.M., Lee, D.H., Stanley, D., Kim, Y., 2021. The prostanoids, thromboxanes, mediate hemocytic immunity to bacterial infection in the lepidopteran Spodoptera exigua. Dev. Comp. Immunol. 120, 104069. 

  8. Amiri-Besheli, B., Khambay, B., Cameron, S., Deadman, M., Butt, T.M., 2000. Inter- and intra-specific variation in destruxin production by the insect pathogenic Metarhizium, and its significance to pathogenesis. Mycol. Res. 104, 447-452. 

  9. Baines, D., Desantis, T., Downer, R.G.H., 1992. Octopamine and 5-hydroxytryptamine enhance the phagocytic and nodule formation activities of cockroach (Periplaneta americana) haemocytes. J. Insect Physiol. 38, 905-914. 

  10. Barletta, A.B.F., Trisnadi, N., Ramirez, J.L., Barillas-Mury, C., 2019. Mosquito midgut prostaglandin release establishes systemic immune priming. iScience 19, 54-62. 

  11. Benfarhat-Touzri, D., Ben Amira, A., Ben khedher, S., Givaudan, A., Jaoua, S., Tounsi, S., 2014. Combinatorial effect of Bacillus thuringiensis kurstaki and Photorhabdus luminescens against Spodoptera littoralis (Lepidoptera: Noctuidae). J. Basic Microbiol. 54, 1160-1165. 

  12. Bergstrom, S., Ryhage, R., Samuelsson, B., Sjovall, J., 1962. The structure of prostaglandin E, F 1 and F 2 . Acta Chem. Scandin. 16, 501-502. 

  13. Borkman, M., Storlien, L.H., Pan, D.A., Jenkins, A.B., Chisholm, D.J., Campbell, L.V., 1993. The relation between insulin sensitivity and the fatty-acid composition of skeletal-muscle phospholipids. N. Engl. J. Med. 328, 238-244. 

  14. Bouarab, K., Adas, F., Gaquerel, E., Kloareg, B., Salaun, J.P., Potin, P., 2004. The innate immunity of a marine red alga involves oxylipins from both the eicosanoid and octadecanoid pathways. Plant Physiol. 135, 1838-1848. 

  15. Braune, S., Kupper, J.H., Jung, F., 2020. Effect of prostanoids on human platelet function: an overview. Int. J. Mol. Sci. 21, 9020. 

  16. Clark, K.D., Pech, L.L., Strand, M.R., 1997. Isolation and identification of a plasmatocyte-spreading peptide from the hemolymph of the lepidopteran insect Pseudoplusia includens. J. Biol. Chem. 272, 23440-23447. 

  17. Clem, R.J., 2005. The role of apoptosis in defense against baculovirus infection in insects. Curr. Top. Microbiol. Immunol. 289, 113-129. 

  18. Davidson, F.F., Dennis, E.A., 1990a. Amino acid sequence and circular dichroism of Indian cobra (Naja naja naja) venom acidic phospholipase A 2 . Biochim. Biophys. Acta 1037, 7-15. 

  19. Davidson, F.F., Dennis, E.A., 1990b. Evolutionary relationships and implications for the regulation of phospholipase A 2 from snake venom to human secreted forms. J. Mol. Evol. 31, 228-238. 

  20. Dennis, E.A., 1994. Diversity of group types, regulation, and function of phospholipase A 2 . J. Biol. Chem. 269, 13057-13060. 

  21. Dudler, T., Chen, W.Q., Wang, S., Schneider, T., Annand, R.R., Dempcy, R.O., Crameri, R., Gmachl, M., Suter, M., Gelb, M.H., 1992. High-level expression in Escherichia coli and rapid purification of enzymatically active honey bee venom phospholipase A 2 . Biochim. Biophys. Acta 1165, 201-210. 

  22. Eom, S., Park, Y., Kim, H., Kim, Y., 2014. Development of a high efficient "Dual Bt-Plus" insecticide using a primary form of an entomopathogenic bacterium, Xenorhabdus nematophila. J. Microbiol. Biotechnol. 24, 507-521. 

  23. Ferre, J., Real, M.D., van Rie, J., Jansens, S., Peferoen, M., 1991. Resistance to the Bacillus thuringiensis bioinsecticide in a field population of Plutella xylostella is due to a change in a midgut membrane receptor. Proc. Natl. Acad. Sci. U. S. A. 88, 5119-5123. 

  24. Frappier, F., Ferron, P., Pais, M., 1975. Chimie des champignons entomopathogenes - le beauvellide, nouveau cyclodepsipeptide isole d'un Beauveria tenella. Phytochemistry 14, 2703-2705. 

  25. Gillespie, J.P., Kanost, M.R., Trenczek, T., 1997. Biological mediators of insect immunity. Annu. Rev. Entomol. 42, 611-643. 

  26. Goettel, M.S., Eilenberg, J., Glare, T., 2005. Entomopathogenic fungi and their role in regulaion of insect populations. in: Gilbert, L.I., Iatrou, K., Gill, S.S. (Eds.), Comprehensive Mol Insect Science, vol 6, Elsevier, New York, pp 361-405. 

  27. Groen, C.M., Jayo, A., Parsons, M., Tootle, T.L., 2015. Prostaglandins regulate nuclear localization of Fascin and its function in nucleolar architecture. Mol. Biol. Cell. 26, 1901-1917. 

  28. Hajek, A.E., St. Leger, R.J., 1994. Interactions between fungal pathogens and insect hosts. Annu. Rev. Entomol. 39, 293-322. 

  29. Hamill, R.L., Higgens, C.E., Boaz, H.E., Gorman, M., 1969. The structure of beauvericin, a new depsipeptide antibiotic toxic to Artemia salina. Tetrahed. Lett. 49, 4255-4258. 

  30. Han, G.D., Na, J., Chun, Y.S., Kumar, S., Kim, W., Kim, Y., 2017. Chlorine dioxide enhances lipid peroxidation through inhibiting calcium-independent cellular PLA 2 in larvae of the Indianmeal moth, Plodia interpunctella. Pestic. Biochem. Physiol. 143, 48-56. 

  31. Hasan, Shabbir, A., Kim, Y. 2019. Biosynthetic pathway of arachidonic acid in Spodoptera exigua in response to bacterial challenge. Insect Biochem. Mol. Biol. 111, 103179. 

  32. Herrero, S., Ansems, M., Van Oers, M.M., Vlak, J.M., Bakker, P.L., de Maagd, R.A., 2007. REPAT, a new family of proteins induced by bacterial toxins and baculovirus infection in Spodoptera exigua. Insect Biochem. Mol. Biol. 37, 1109-1118. 

  33. Hrithik, T.H., Vatanparast, M., Ahmed, S., Kim, Y., 2021. Repat33 acts as a downstream component of eicosanoid signaling pathway mediating immune responses of Spodoptera exigua, a lepidopteran insect. Insects 12, 449. 

  34. Imler, J.L., Bulet, P., 2005. Antimicrobial peptides in Drosophila: structures, activities and gene regulation. Chem. Immunol. Allergy 86, 1-21. 

  35. Ishibashi, K., 2006. Aquaporin subfamily with unusual NPA boxes. Biochem. Biophy. Acta 1758, 989-993. 

  36. Jallouli, W., Boukedi, H., Sellami, S., Frikha, F., Abdelkefi-Mesrati, L., Tounsi, S., 2018. Combinatorial effect of Photorhabdus luminescens TT01 and Bacillus thuringiensis Vip3Aa16 toxin against Agrotis segetum. Toxicon. 142, 52-57. 

  37. Jeffs, L.B., Khachatourians, G.G., 1997. Toxic properties of Beauveria pigments on erythrocyte membranes. Toxicon. 35, 1351-1356. 

  38. Ji, D., Yi, Y., Kim, G.H., Choi, Y.H., Kim, P., Baek, N.I., Kim, Y., 2004. Identification of an antibacterial compound, benzylideneacetone, from Xenorhabdus nematophila against major plant-pathogenic bacteria. FEMS Microbiol. Lett. 239, 241-248. 

  39. Jiang, H., Kanost, M.R., 2000. The clip-domain family of serine proteinases in arthropods. Insect Biochem. Mol. Biol. 30, 95-105. 

  40. Jung, S., Kim, Y., 2006a. Synergistic effect of entomopathogenic bacteria (Xenorhabdus sp. and Photorhabdus temperata ssp. temperata) on the pathogenicity of Bacillus thuringiensis ssp. aizawai against Spodoptera exigua (Lepidoptera: Noctuidae). Environ. Entomol. 35, 1584-1589. 

  41. Jung, S., Kim, Y., 2006b. Synergistic effect of Xenorhabdus nematophila K1 and Bacillus thuringiensis subsp. aizawai against Spodoptera exigua (Lepidoptera: Noctuidae). Biol. Control. 39, 201-209. 

  42. Jung, S., Kwoen, M., Choi, J.M., Je, Y.H., Kim, Y., 2006. Parasitism of Cotesia spp. enhances susceptibility of Plutella xylostella to other pathogens. J. Asia Pac. Entomol. 9, 255-263. 

  43. Jung, J., Sajjadian, S.M, Kim, Y., 2019. Hemolin, an immunoglobulin-like peptide, opsonizes nonself targets for phagocytosis and encapsulation in Spodoptera exigua, a lepidopteran insect. J. Asia Pac. Entomol. 22, 947-956. 

  44. Kanost, M.R., Jiang, H., Yu, X.Q., 2004. Innate immune responses of a lepidopteran insect, Manduca sexta. Immunol Rev. 198, 97-105. 

  45. Kim, Y., Stanley, D., 2021. Eicosanoid signaling in insect immunology: new genes and unresolved issues. Genes 12, 211. 

  46. Kim, G., Madanagopal, N., Lee, D., Kim, Y., 2009. Octopamine and 5-hydroxytryptamine mediate hemocytic phagocytosis and nodule formation via eicosanoids in the beet armyworm, Spodoptera exigua. Arch. Insect Biochem. Physiol. 70, 162-176. 

  47. Kim, Y., Lee, S., Seo, S., Kim, K., 2016. Fatty acid composition of different tissues of Spodoptera exigua larvae and a role of cellular phospholipase A 2 . Korean J. Appl. Entomol. 55, 129-138. 

  48. Kim, Y.. Stanley, D., Ahmed, S., An, C., 2018a. Eicosanoid-mediated immunity in insects. Dev. Comp. Immunol. 83, 130-143. 

  49. Kim, H., Choi, D., Jung, J., Kim, Y., 2018b. Eicosanoid mediation of immune responses at early bacterial infectin stage and its inhibition by Photorhabdus temperata subsp. temperata, an entomopathogenic bacterium. Arch. Insect Biochem. Physiol. 99, e21502. 

  50. Kim, Y., Ahmed, S., Al Baki, M.A., Kumar, S., Kim, K., Park, Y., Stanley, D., 2020. Deletion mutant of PGE 2 receptor using CRISPR-Cas9 exhibits larval immunosuppression and adult infertility in a lepidopteran insect, Spodoptera exigua. Dev. Comp. Immunol. 111, 103743. 

  51. Kodaira, Y., 1961. Biochemical studies on the muscardine fungi in the silkworms, Bombyx mori. J. Fac. Text. Sci. Technol. Sinshu Uni. Sericult. 5, 1-68. 

  52. Kramer, R.M., Hession, C., Johansen, B., Hayes, G., McGray, P., Chow, E.P., Tizard, R., Pepinsky, R.B., 1989. Structure and properties of a human non-pancreatic phospholipase A 2 . J. Biol. Chem. 264, 5768-5775. 

  53. Krasnoff, S.B., Gupta, S., 1994. Identification of the antibiotic phomalactone from the entomopathogenic fungus Hirsutella thompsonii var. synnematosa. J. Chem. Ecol. 20, 293-302. 

  54. Krasnoff, S.B., Gupta, S., St. Leger, R.J., Renwick, J.A., Roberts, D.W., 1991. Antifungal and insecticidal properties of efrapeptins: metabolites of the fungus Tolypocladium niveum. J. Invertebr. Pathol. 58, 180-188. 

  55. Kwon, H., Yang, Y., Kumar, S., Lee, D.W., Bajracharya, P., Calkins, T.L., Kim, Y., Pietrantonio, P.V., 2020. Characterization of the first insect prostaglandin (PGE 2 ) receptor: MansePGE 2 R is expressed in oenocytoids and lipoteichoic acid (LTA) increases transcript expression. Insect Biochem. Mol. Biol. 117, 103290. 

  56. Kwon, H., Hall, D.R., Smith, R.C., 2021. Prostaglandin E 2 signaling mediates oenocytoid immune cell function and lysis, limiting bacteria and Plasmodium oocyst survival in Anopheles gambiae. Front. Immunol. 12, 680020. 

  57. Lavine, M.D., Strand, M.R., 2002. Insect hemocytes and their role in immunity. Insect Biochem. Mol. Biol. 32, 1295-1309. 

  58. Lee, K.A., Kim, S.H., Kim, E.K., Ha, E.M., You, H., Kim, B., Kim, M.J., Kwon, Y., Ryu, J.H., Lee, W.J., 2013. Bacterial-derived uracil as a modulator of mucosal immunity and gut-microbe homeostasis in Drosophila. Cell 153, 797-811. 

  59. Lee, S.J., Yang, Y.T., Kim, S., Lee, M.R., Kim, J.C., Park, S.E., Hossain, M.S., Shin, T.Y., Nai, Y.S., Kim, J.S., 2019. Transcriptional response of bean bug (Riptortus pedestris) upon infection with entomopathogenic fungus, Beauveria bassiana JEF-007. Pest Manag. Sci. 75, 333-345. 

  60. Lemaitre, B., Hoffmann, J., 2007. The host defense of Drosophila melanogaster. Annu. Rev. Immunol. 25, 697-743. 

  61. Loeb, M.J., Martin, P.A., Hakim, R.S., Goto, S., Takeda, M., 2001. Regeneration of cultured midgut cells after exposure to sublethal doses of toxin from two strains of Bacillus thuringiensis. J. Insect Physiol. 47, 599-606. 

  62. Ma, G., Roberts, H., Sarjan, M., Featherstone, N., Lahnstein, J., Akhust, R., Schmidt, O.. 2005. Is the mature endotoxin Cry1Ac from Bacillus thuringiensis inactivated by a coagulation reaction in the gut lumen of resistant Heliocoverpa armigera larvae? Insect Biochem. Mol. Biol. 35, 729-739. 

  63. Mastore, M., Caramella, S., Quadroni, S., Brivio, M.F., 2021. Drosophila suzukii susceptibility to the oral administration of Bacillus thuringiensis, Xenorhabdus nematophila and its secondary metabolites. Insects 12, 635. 

  64. Matha, V., Weiser, J., Olejnicek, J., 1988. The effect of tolypin in Tolypocladium niveum crude extract against mosquito and blackfly larvae in the laboratory. Folia Parasitol. 35, 381-383. 

  65. Mazet, I., Vey, A., 1995. Hirsutellin A, a toxic protein produced in vitro by Hirsutella thompsonii. Microbiol. Reading 141, 1343-1348. 

  66. Merchant, D., Ertl, R.L., Rennard, S.I., Stanley, D.W., Miller, J.S., 2008. Eicosanoids mediate insect hemocyte migration. J. Insect Physiol. 54, 215-221. 

  67. Miller, J.S., 2005. Eicosanoids influence in vitro elongation of plasmatocytes from the tobacco hornworm, Manduca sexta. Arch. Insect Biochem. Physiol. 59, 42-51. 

  68. Mollah, M.M.I., Kim, Y., 2020. Virulent secondary metabolites of entomopathogenic bacteria genera, Xenorhabdus and Photorhabdus, inhibit phospholipase A 2 to suppress host insect immunity. BMC Microbiol. 20, 359. 

  69. Mollah, M.M.I., Dekebo, A., Kim, Y., 2020. Immunosuppressive activities of novel PLA 2 inhibitors from Xenorhabdus hominickii, an entomopathogenic bacterium. Insects 11, 505. 

  70. Morishima, I., Yamano, Y., Inoue, K., Matsuo, N., 1997. Eicosanoids mediate induction of immune genes in the fat body of the silkworm, Bombyx mori. FEBS Lett. 419, 83-86. 

  71. Omoto, C., McCoy, C.W., 1998. Toxicity of purified fungal toxin hirsutellin A to the citrus rust mite Phyllocoprura oleivora. J. Invertebr. Pathol. 72, 319-322. 

  72. Ovchinnikov, Y.A., Ivanov, V.T., Mikhaleva, I.I., 1971. The synthesis and some properties of beauvericin. Tetrahed. Lett. 2, 159-162. 

  73. Park, Y., Kim, Y., 2000. Eicosanoids rescue Spodoptera exigua infected with Xenorhabdus nematophila, the symbiotic bacteria to the entomopathogenic nematode Steinernema carpocapsae. J. Insect Physiol. 46, 1469-1476. 

  74. Park, J., Kim, Y., 2011. Benzylideneacetone suppresses both cellular and humoral immune responses of Spodoptera exigua and enhances fungal pathogenicity. J. Asia Pac. Entomol. 14, 423-427. 

  75. Park, J., Kim, Y., 2012. Change in hemocyte populations of the beet armyworm, Spodoptera exigua, in response to bacterial infection and eicosanoid mediation. Korean J. Appl. Entomol. 51, 349-356. 

  76. Park, J., Stanley, D., Kim, Y. 2013. Rac1 mediates cytokine-stimulated hemocyte spreading via prostaglandin biosynthesis in the beet armyworm, Spodoptera exigua. J. Insect Physiol. 59, 682-689. 

  77. Park, Y., Kumar, S., Kanumuri, R., Stanley, D., Kim, Y., 2015. A novel calcium-independent cellular PLA 2 acts in insect immunity and larval growth. Insect Biochem. Mol. Biol. 66, 13-23. 

  78. Park, Y., Kang, S., Mohamad, M.D., Kim, H., Jung, J., Kim, Y., 2017. Identification and bacterial characteristics of Xenorhabdus hominickii ANU101 from an entomopathogenic nematode, Steinernema monticolum. J Invertebr Pathol 144, 74-87. 

  79. Phelps, P.K., Miller, J.S., Stanley, D.W., 2003. Prostaglandins, not lipoxygenase products, mediate insect microaggregation reactions to bacterial challenge in isolated hemocyte preparations. Comp. Biochem. Physiol. 136A, 409-416. 

  80. Quiot, J.M., Vey, A., Vago, C., Pais, M., 1980. Action antivirale d'une mycotoxine. Etude d'une toxine de l'hyphomycete Metarhizium anisopliae (Metsch.) Sorok. en culture cellulaire. CR. Acad. Sci. Ser. D (Paris) 291, 763-766. 

  81. Rahman, M.M., Roberts, H.L.S., Sarjan, M., Asgari, S., Schmidt, O., 2004. Induction and transmission of Bacillus thuringiensis tolerance in the flour moth, Ephestia kuehniella. Proc. Natl. Acad. Sci. U. S. A. 101, 2696-2699. 

  82. Rivero, A., 2006. Nitric oxide: an antiparasitic molecule of invertebrates. Trends Parasitol. 22, 219-225. 

  83. Roberts, D.W., Hajek, A.E., 1992. Entomopathogenic fungi as bioinsecticides. in: Leatham, G.F. (Ed.), Frontiers in Industrial Mycology. Chapman and Hall, New York, pp 144-159. 

  84. Roy, M.C., Nam, K., Kim, J., Stanley, D., Kim, Y., 2021. Thromboxane mobilizes insect blood cells to infection foci. Front. Immunol. 12, 791319 

  85. Ryu, Y., Oh, Y., Yoon, J., Cho, W., Baek, K., 2003. Molecular characterization of a gene encoding the Drosophila melanogaster phospholipase A 2 . Biochim. Biophys. Acta 1628, 206-210. 

  86. Sadekuzzaman, M., Gautam, N., Kim, Y., 2017a. A novel calcium-independent phospholipase A 2 and its physiological roles in development and immunity of a lepidopteran insect, Spodoptera exigua. Dev. Comp. Immunol. 77, 210-220. 

  87. Sadekuzzaman, M.D., Park, Y., Jung, J., Lee, S., Kim, K., Kim, Y., 2017b. An entomopathogenic bacterium, Xenorhabdus hominickii ANU101, produces oxindole and suppresses host insect immune response by inhibiting eicosanoid biosynthesis. J. Invertebr. Pathol. 145, 13-22. 

  88. Sadekuzzaman, M.D., Stanley, D., Kim, Y., 2018. Nitric Oxide mediates insect cellular immunity via phospholipase A 2 activation. J. Innate Immun. 10, 1-12. 

  89. Sajjadian, S.M., Kim, Y., 2020. PGE 2 upregulates gene expression of dual oxidase in a lepidopteran insect midgut via cAMP signalling pathway. Open Biol. 10, 200197. 

  90. Sajjadian, S.M., Vatanparast, M., Stanley, D., Kim, Y., 2019a. Secretion of secretory phospholipase A 2 into Spodoptera exigua larval midgut lumen and its role in lipid digestion. Insect Mol. Biol. 28, 773-784. 

  91. Sajjadian, S.M., Vatanparast, M., Kim, Y., 2019b. Toll/IMD signal pathways mediate cellular immune responses via induction of intracellular PLA 2 expression. Arch. Insect Biochem. Physiol. 101, e21559. 

  92. Sajjadian, S.M., Ahmed, S., Al Baki, M.A., Kim, Y., 2020. Prostaglandin D 2 synthase and its functional association with immune and reproductive processes in a lepidopteran insect, Spodoptera exigua. Gen. Comp. Endocrinol. 287, 113352. 

  93. Scarpati, M., Qi, Y., Govid, S., Singh, S., 2019. A combined computational strategy of sequence and structural analysis predicts the existence of a functional eicosanoid pathway in Drosophila melanogaster. PLoS ONE 14, e0211897. 

  94. Seilhamer, J.J., Pruzanski, W., Vadas, P., Plant, S., Miller, J.A., Kloss, J., Johnson, L.K., 1989. Cloning and recombinant expression of phospholipase A 2 present in rheumatoid arthritic synovial fluid. J. Biol. Chem. 264, 5335-5338. 

  95. Seo, S., Kim, Y., 2011. Development of "Bt-Plus" biopesticide using entomopathogenic bacteria (Xenorhabdus nematophila and Photorhabdus temperata ssp. temperata) metabolites. Korean J. Appl. Entomol. 50, 171-178. 

  96. Seo, S., Jang, H., Kim, K., Kim, Y., 2010. Comparative analysis of immunsuppressive metabolites synthesized by an entomopathogenic bacterium, Photorhabdus temperata ssp. temperata, to select economic bacterial culture media. Korean J. Appl. Entomol. 49, 409-416. 

  97. Seo, S., Jeon, M.Y., Chun, W.S., Lee, S.H,, Seo, J.A., Yi, Y.G., Hong, Y.P., Kim, Y., 2011. Structure-activity analysis of benzylideneacetone for effective control of plant pests. Korean J. Appl. Entomol. 50, 107-113. 

  98. Seo, S., Lee, S., Hong, Y., Kim, Y., 2012. Phospholipase A 2 inhibitors synthesized by two entomopathogenic bacteria, Xenorhabdus nematophila and Photorhabdus temperata subsp temperata. Appl. Environ. Microbiol. 78, 3816-3823. 

  99. Shafeeq, T., Ahmed, S., Kim, Y., 2018. Toll immune signal activates cellular immune response via eicosanoid. Dev. Comp. Immunol. 84, 408-419. 

  100. Shao, Z., Cui, Y., Liu, X., Yi, H., Ji, J., Yu, Z., 1998. Processing of delta-endotoxin of Bacillus thuringiensis subsp. kurstaki HD-1 in Heliothis armigera midgut juice and the effects of protease inhibitors. J. Invertebr. Pathol. 72, 73-81. 

  101. Shin, T.Y., Lee, M.R., Park, S.E., Lee, S.J., Kim, W.J., Kim, J.S., 2020. Pathogenesis-related genes of entomopathogenic fungi. Arch. Insect Biochem. Physiol. 105, e21747. 

  102. Shrestha, S., Kim, Y., 2008. Eicosanoids mediate prophenoloxidase release from oenocytoids in the beet armyworm Spodoptera exigua. Insect Biochem. Mol. Biol. 38, 99-112. 

  103. Shrestha, S., Kim, Y., 2010. Activation of immune-associated phospholipase A 2 is functionally linked to Toll/Imd signal pathways in the red flour beetle, Tribolium castaneum. Dev. Comp. Immunol. 34, 530-537. 

  104. Shrestha, S., Park, Y., Stanley, D., Kim, Y., 2010. Genes encoding phospholipase A 2 mediate insect nodulation reactions to bacterial challenge. J. Insect Physiol. 56, 324-332. 

  105. Shrestha, S., Stanley, D., Kim, Y., 2011. PGE 2 induces oenocytoid cell lysis via a G protein-coupled receptor in the beet armyworm, Spodoptera exigua. J. Insect Physiol. 57, 1537-1544. 

  106. Shrestha, S., Park, J., Ahn, S., Kim, Y., 2015. PGE 2 mediates oenocytoid cell lysis via a sodium-potassium-chloride cotransporter. Arch. Insect Biochem. Physiol. 89, 218-229. 

  107. Srikanth, K., Park, J., Kim, Y., Stanley, D., 2011. Plasmatocyte-spreading peptide influences hemocyte behavior via eicosanoids. Arch. Insect Biochem. Physiol. 78, 145-160. 

  108. Stanley, D., 2000. Eicosanoids in invertebrate signal transduction systems. Princeton University Press, Princeton, New Jersey. 

  109. Stanley, D., Kim, Y., 2020. Why most insects have very low proportions of C20 polyunsaturated fatty acids: the oxidative stress hypothesis. Arch. Insect Biochem. Physiol. 103, e21622. 

  110. Strand, M.R., 2008. The insect cellular immune response. Insect Sci. 15, 1-14. 

  111. Suzuki, A., Kanaoka, M., Isogai, A., Murakpshi, S., Ichinoe, M., Tamura, S., 1977. Bassianolide, a new insecticidal cyclodepsipeptide from Beauveria bassiana and Verticillium lecanii. Tetrahed. Lett. 25, 2167-2170. 

  112. Tabashnik, B.E., Brevault, T., Carriere, Y., 2013. Insect resistance to Bt crops: lessons from the first billion acres. Nat. Biotech. 31, 510-521. 

  113. Terry, B.J., Liu, W.C., Cianci, C.W., Proszynski, E., Fernandes, P., Bush, K., Meyers, E., 1992. Inhibition of herpes simplex virus type 1 DNA polymerase by the natural product oosporein. J. Antibiotics 45, 286-288. 

  114. Tyurina, Y.Y., Tyurin, V.A., Epperly, M.W., Greenberger, J.S., Kagan, V.E., 2008. Oxidative lipidomics of gamma-irradiation-induced intestinal injury. Free Radic. Biol. Med. 44, 299-314. 

  115. Tootle, T.L., Spradling, A.C., 2008. Drosophila Pxt: a cyclooxygenase-like facilitator of follicle maturation. Development 135, 839-847. 

  116. van Rie, J., McGaughey, W.H., Johnson, D.E., Barnett, B.D., van Mellaert, H., 1990. Mechanism of insect resistance to the microbial insecticide Bacillus thuringiensis. Science 247, 72-74. 

  117. Vasquez, A.M., Mouchlis, V.D., Dennis, E.A., 2018. Review of four major distinct types of human phospholipase A 2 . Adv. Biol. Regul. 67, 212-218. 

  118. Vatanparast, M., Ahmed, S., Herrero, S., Kim, Y., 2018. A non-venomous sPLA 2 of a lepidopteran insect: its physiological functions in development and immunity. Dev. Comp. Immunol. 89, 83-92. 

  119. Vatanparast, M., Ahmed, S., Sajjadian, S.M., Kim, Y., 2019. A prophylactic role of a secretory PLA 2 of Spodoptera exigua against entomopathogens. Dev. Comp. Immunol. 95, 108-117. 

  120. Vey, A., Hoagland, R.E., Butt, T.M., 2001. Toxic metabolites of fungal biocontrol agents. in: Butt, T.M., Jackson, C., Magan, N. (Eds.), Fungal Biocontrol Agents, CABI Publishing, Wallingford, pp. 311-346. 

  121. von Euler, U.S., 1936. On the specific vasodilating and plain muscle stimulating substances from accessory genital glands in men and certain animals (prostaglandin and vesiglandin). J. Physiol. 88, 213-234. 

  122. Wolf, M.J., Gross, R.W., 1996. The calcium-dependent association and functional coupling of calmodulin with myocardial phospholipase A 2 . Implications for cardiac cycle-dependent alterations in phospholipolysis. J. Biol. Chem. 271, 20989-20992. 

  123. Yajima, M., Takada, M., Takahashi, N., Kikuchi, H., Natori, S., Oshima, Y., Kurata, S., 2003. A newly established in vitro culture using transgenic Drosophila reveals functional coupling between the phospholipase A 2 -generated fatty acid cascade and lipopolysaccharide-dependent activation of the immune deficiency (imd) pathway in insect immunity. Biochem J. 371, 205-210. 

  124. Yamamoto, K., Hirowatari, A., 2021. Investigation of the substrate-binding site of a prostaglandin E synthase in Bombyx mori. Protein J. 40, 63-67. 

  125. You, H.J., Woo, C.H., Choi, E.Y., Cho, S.H., Yoo, Y.J., Kim, J.H., 2005. Roles of Rac and p38 kinase in the activation of cytosolic phospholipase A 2 in response to PMA. Biochem. J. 388, 527-535. 

  126. Zhao, P., Li, J., Wang, Y., Jiang, H., 2007. Broad-spectrum antimicrobial activity of the reactive compounds generated in vitro by Manduca sexta phenoloxidase. Insect Biochem. Mol. Biol. 37, 952-959. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로