$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

21세기 과학 교육과정 개혁 논리로서의 과학적 소양 및 핵심 역량 담론 비교 연구
A Comparative Study of Scientific Literacy and Core Competence Discourses as Rationales for the 21st Century Science Curriculum Reform 원문보기

한국과학교육학회지 = Journal of the Korean association for science education, v.42 no.1, 2022년, pp.1 - 18  

이경건 (서울대학교) ,  홍훈기 (서울대학교)

초록
AI-Helper 아이콘AI-Helper

오늘날 세계적으로 영향력을 미치고 있는 21세기 과학 교육과정 개혁의 두 논리는 핵심 역량 및 과학적 소양이라고 할 수 있다. 그런데 양자 간의 관계는 아직 면밀히 규명되지 않고 모호하게 남아 있으며, 이로 인하여 국가 교육과정 총론 수준의 혁신적 교육과정 구성 논리와 과학 교과의 고유한 교육과정 구성 논리가 조화되는 데 어려움이 발생하고 있다. 이에, 본 연구는 21세기 과학 교육과정 개혁 논리로서의 과학적 소양 및 핵심 역량 담론을 비교하여, 향후 과학 교육과정 개정에 대한 시사점을 제공하고자 하였다. 본 연구는 문헌 연구 방법을 취하였다. 이에 과학적 소양 및 핵심 역량 담론들을 구성해온 주요 연구 문헌들과 정책 보고서들을 두루 참조하였다. II장에서는 먼저 과학적 소양 및 핵심 역량 담론들이 영향력을 발휘하게 된 역사적 경로를 돌아본다. 이 과정에서 2000년대 초반부터 각 담론의 전개양상을 모양지운 OECD의 역할에 주목할 것이다. 그리고 국내에서 해당 담론들이 어떻게 수용되어왔는가 또한 살펴본다. III장과 IV장에서는 과학적 소양과 핵심 역량 담론의 교차를 살펴본다. III장에서는 양자 모두가 학생 위기 레토릭에 힘입어 성장하였다는 점, 개인 차원, 공동체 차원, 지구적 차원을 고려하는 다층적 의미를 지닌다는 점, 교과 내용 조직 및 학습 방법의 논리가 유사하다는 점, 고부담 평가가 교육과정 개혁을 촉구한다는 점이 제시된다. IV장에서는 과학적 소양과 핵심 역량 담론 각각이 과학 교육과정 개혁에 대하여 제공할 수 있는 차별화된 강점과 함께 약점 역시 비교한다. V장에서는 후기 Wittgenstein 및 Kuhn의 관점에서, 과학적 소양과 핵심 역량을 21세기 과학 교육과정 개혁 논리로서의 가족유사성을 지니는 언어로 이해할 수 있다고 제안한다. 이를 통해 우리나라 국가 교육과정 개발에서 반복되곤 하는 '총론과 각론의 괴리' 문제를 해소할 이론적 실마리와 함께, 2022 개정 교육과정을 비롯한 향후 과학 교육과정 담론이 위기 레토릭을 넘어 희망적인 목소리를 담아야 함을 제안한다.

Abstract AI-Helper 아이콘AI-Helper

The two most influential rationales for the 21st century science curriculum reform can be said to be core competence and scientific literacy. However, the relationship between the two has not been scrutinized but remained speculative - and this has made the harmonization of the general guideline and...

주제어

참고문헌 (124)

  1. American Association for the Advancement of Science [AAAS]. (1990). Science for all Americans. New York: Oxford University Press. 

  2. Anderson, H. (2000). Kuhn's account of family resemblance: A solution to the problem of wide-open texture. Erkenntnis, 52(3), 313-337. 

  3. Archer, M. S. (2000). Being Human: The Problem of Agency. Cambridge University Press. 

  4. Auerbach, A. J., & Schussler, E. E. (2017). Curriculum alignment with Vision and Change improves student scientific literacy. CBE-Life Sciences Education, 16(ar29), 1-9. 

  5. Barker, P., Chen, X., & Andersen, H. (2003). Kuhn on concepts and categorization. In T. Nickles (Ed.), Thomas Kuhn (pp. 212-245). Cambridge: Cambridge University Press. 

  6. Biesta, G. & Prestley, M. (2013). Capacities and the curriculum. In Prestley, M., & Biesta, G. (Eds.). Reinventing Curriculum (pp. 35-49). Bloomsbury Academic. 

  7. Bybee, R. W. (1997). Achieving Scientific Literacy: From Purposes to Practices. NH: Heinemann. 

  8. Cho, C. -K. (2014). Revision of geography national curriculum in UK and debates about knowledge. Journal of the Korean Geographical Soceity, 49(3), 456-471. 

  9. Cho, Y. (1997). Socialization and Education. Seoul: Kyoyookbook. 

  10. Choi, K., Lee, H., Shin, N., Kim, S. -W., & Krajcik, J. (2011) Re-conceptualization of scientific literacy in South Korea for the 21st century. Journal of Research in Science Teaching, 48(6), 670-697. 

  11. Choi, S. (2018). Practices of competency-based curriculum: Cases at the high school level. The Journal of Curriculum Studies, 36(1), 169-196. 

  12. DeBoer, G. E. (2000). Scientific literacy: Another look at its historical and contemporary meanings and its relationship to science education reform. Journal of Research in Science Teaching, 37(6), 582-601. 

  13. Elam, S. (1971). Performance-based teacher education. What is the State of the Art?, Washington: American Association of Colleges for Teacher Education. 

  14. Ewens, T. (1979). Analyzing the impact of competence-based approaches on liberal education. In Grant, G. (ed.). On Competence: A Critical Analysis of Competence-Based Reforms in Higher Education. San Francisco, CA: Jossey-Bass. 

  15. Fensham, P. J. (1985). Science for all: A reflective essay. Journal of Curriculum Studies, 17(4), 415-435. 

  16. Fensham, P. J. (2007). Competences, from within and without: New challenges and possibilities for scientific literacy. In C. Linder, L. Ostman, & P. Wickman (eds.), Promoting scientific literacy: Science education research in transaction. Proceedings of the Linnaeus Tercentenary Symposium held at Uppsala University (pp. 113-119). Uppsala: Uppsala University. 

  17. Fensham, P. J. (2009). Real world contexts in PISA science: Implications for context-based science education. Journal of Research in Science Teaching, 46(8), 884-896. 

  18. Ha, H., & Kim, H. -B. (2019). A theoretical investigation on agency to facilitate the understanding of student-centered learning communities in science classrooms. Journal of the Korean Association for Science Education, 39(1), 101-113. 

  19. Han, H. (2020). A study of the relationship between subject knowledge and competence by revisiting P. H. Hirst's curriculum theory. The Journal of Curriculum Studies, 38(3), 131-155. 

  20. Han, H. -C., Kim, K. -C., Lee, J. -Y., Chang. K. -S. (2018). Exploring issues for effective implementation of competency-based curriculum through analysis of domestic research trends. The Journal of Curriculum and Evaluation, 21(3), 1-24. 

  21. Harlen, W. (2001). The assessment of scientific literacy in the OECD/PISA project. Studies in Science Education, 36(1), 79-103. 

  22. Hodge, S. (2007). The origins of competency-based training. Australian Journal of Adult Learning, 47(2), 179-209. 

  23. Hodson, D. (2003). Time for action: Science education for an alternative future. International Journal of Science Education, 25(6), 645-670. 

  24. Hurd, P. DeH. (1958). Scientific literacy: Its meaning for American schools. Educational Leadership, 16, 13-16. 

  25. Hurd, P. DeH. (1998). Scientific literacy: New minds for a changing world. Science Education, 82(3), 407-416. 

  26. Hwang, G. (2017), Critical review of issues in general competece education. The Journal of Curriculum Studies, 35(3), 241-271. 

  27. Hwang, G. (2021). Research for setting major features of the general guideline of the 2022 Revised National Curriculum. In Proceedings of the Public Hearing for Research for Preparing Major Features of the General Guideline of the 2022 Revised National Curriculum (pp. 3-32). 

  28. Jeon, S. -J., Kwak, Y., Koh, H. Y., Lee, Y. S., & Choi, S. Y. (2017). The needs analysis of science literacy required for Koreans in the future soceity. Journal of the Korean Association for Science Education, 37(3), 441-452. 

  29. Jeong, Y. T. (1985). Today and Tomorrow of Science Education. Seoul: Korea Broadcasting System. 

  30. Kahle, J. B. (2007). Systematic reform: Research, vision, and politics. In Abell, S. K., & Lederman, N. G. (Eds.), Handbook of Research in Science Education (pp. 911-941). Mahwah, NJ: Lawrence Erlbaum. 

  31. Kim, C. -J. (1989). Students' intuitive ideas in Earth Science. Journal of Korean Earth Science Society, 10(2), 229-235. 

  32. Kim, H., & Kim. J. G. (2019). Development of science-art convergence STEAM education program for aesthetic sensibility competency: Making illustrated poem using pressed flower. School Science Journal, 13(4), 431-440. 

  33. Kim, L. -J. (2019). Exploring the concept of "aesthetic sensitivity competency". The Journal of Curriculum Studies, 37(3), 1-28. 

  34. Klopfer, L. E., & Champagne, A. B.(1990). Ghosts of crisis past. Science Education, 74(2), 133-154 

  35. Kolsto, S. D. (2001). Scientific literacy for citizenship: Tools for dealing with the science dimension of controversial socioscientific issues. Science Education, 85(3), 291-310. 

  36. Korea Ministry of Education [KMOE] (1981). Elementary School Curriculum. 

  37. Korea Ministry of Education [KMOE] (1988a). Elementary School Curriculum. 

  38. Korea Ministry of Education [KMOE] (1988b). High School Curriculum. 

  39. Korea Ministry of Education [KMOE] (1997). Science Curriculum. 

  40. Korea Ministry of Education [KMOE] (2015a). General Guideline of the 2015 Revised National Curriculum.. 

  41. Korea Ministry of Education [KMOE] (2015b). Science Curriculum. 

  42. Korea Ministry of Education [KMOE] (2021). Plans for proceeding future curriculum with peoples. 

  43. Korea Ministry of Education, Science and Technology [KMOEST] (2011). Science Curriculum. 

  44. Korea Ministry of Education, Korea Ministry of Science and ICT, & Korea Foundation for the Advancement of Science & Creativity [KMOE, KMOSCIT, & KOFAC] (2019). Korean Science Education Standards for the Next Generation: Scientific Literacy for All Koreans. 

  45. Korean Federation of Science & Technology Societies [KOFST] (1979). Proceeding strategies for the movement of scientifying all people. The Science & Technology, 12(7), 6-7. 

  46. Kortland, J. (2000). A problem-posing approach to teaching for scientific literacy: The case of decision-making about packaging waste. In O. de Jong, E. R. Savelsbergh, A. Alblas (Eds.), Teaching for Scientific Literacy: Context, Competency, Curriculum (pp. 15-25). Utrecht: CDβ Press. 

  47. Kwak, Y. (2016). Competency-Based Curriculum in Science. Paju: Kyoyookbook. 

  48. Kuhn, T. S. (1970). The Structure of Scientific Revolutions (2nd ed.). Chicago: University of Chicago Press. 

  49. Lang, M., Drake, S., & Olson, J. (2006). Discourse and the new didactics of scientific literacy. Journal of Curriculum studies, 38(2), 177-188. 

  50. Laugksch, R. C. (2000). Scientific literacy: A conceptual overview. Science Education, 84(1), 71-94. 

  51. Lee, G. -G., Han, S. -R., Bae, C. -H., & Hong, H. -G. (2019). Hilary Putnam's internal realism and its implications for science curriculum. The Journal of Curriculum Studies, 37(1), 1-27. 

  52. Lee, G. -G., & Hong, H. -G. (2017). A comparison of 「Integrated Science」 and 「Converged Science」 of the 2015 Revised National Curriculum through core concepts. Journal of the Korean Association for Science Education, 37(6), 981-992. 

  53. Lee, G. -G., Park, J., Lee, S. -K., Hong, H. -G., Shim, H. S., & Shin, M. -K. (2019). Exploring multi-faceted understandings and issues regarding science subject matter competency: Considering the relationship with general core competency. Journal of Science Education, 43(1), 94-118. 

  54. Lee, H. -S., & Yoo, P. K. (2020). The effects of the science lesson applying the backward design model on science core competency of 2015 Revised Science, science process skills, and scientific communication ability. Journal of Fisheries and Marine Sciences Education, 32(1), 211-221. 

  55. Lee, M. -J. (2004). The issues in the current studies on the science curriculum reform. Journal of the Korean Association for Science Education, 24(5), 916-929. 

  56. Lee, M. -J. (2009). Toward to the definition of 'scientific literacy'. Journal of Korean Elementary Science Education, 28(4), 487-494. 

  57. Lee, M. -J. (2014). Characteristics and trends in the classifications of scientific literacy definitions. Journal of the Korean Association for Science Education, 34(2), 55-62. 

  58. Lee, S. E. (2018). Exploring an alternative direction for a competece-based curriculum in an age of uncertainty: An "ontological approach." The Journal of Curriculum Studies, 36(1), 45-69. 

  59. Lottero-Perdue, P. S., & Brickhouse, N. W. (2002). Learning on the job: The acquisition of scientific competence. Science Education, 86(6), 756-782. 

  60. McEneaney, E. H. (2003). The worldwide cachet of scientific literacy. Comparative Education Review, 47(2), 217-237. 

  61. McPhail, G., & Rata, E. (2016). Comparing curriculum types: 'Powerful knowledge' and '21st century learning'. New Zealand Journal of Educational Studies, 51(1), 53-68. 

  62. Millar, R. (2013). Improving science education: Why assessment matters. In Corrigan, D., Gunstone, R., & Jones, A. (Eds.). Valuing Assessment in Science Education: Pedagogy, Curriculum, Policy (pp. 55-68). Springer, Dordrecht. 

  63. Millar, R., & Osborne, J. (1998). Beyond 2000: Science education for the future: The report of a seminar series funded by the Nuffiled Foundation. (Retrieved September 30th, 2021 from https://www.nuffieldfoundation.org/wp-content/uploads/2015/11/Beyond-2000.pdf) 

  64. Mun, K., Lee, H., Kim, S. W., Choi, K., Choi, S. Y., & Krajcik, J. S. (2015). Cross-cultural comparison of perceptions on the global scientific literacy with Australian, Chinese, and Korean middle school students. International Journal of Science and Mathematics Education, 13(2), 437-465. 

  65. National Commission on Excellence in Education [NCEE] (1983). A nation at risk: The imperative for educational reform. The Elementary School Journal, 84(2), 113-130. 

  66. National Research Council [NRC] (1996). National Science Education Standards. Washington, DC: National Academy Press. 

  67. National Research Council [NRC] (2007). Taking science to school: Learning and teaching science in grades K-8. Washington, DC: National Academies Press. 

  68. National Research Council [NRC] (2012). A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas. Washington, DC: National Academies Press. 

  69. National Science Teachers Association [NSTA] (1971). NSTA position statement on school science education for the 70's. The Science Teacher, 38, 46-51. 

  70. Neville, A. J. (2009). Problem-based learning and medical education forty years on. Medical Principles and Practice, 18(1), 1-9. 

  71. Next Generation Science Standards [NGSS] Lead States (2013). Next Generation Science Standards: For States, By States. Washington, DC: National Academies Press. 

  72. Norris, S. P., & Phillips, L. M. (2003). How literacy in its fundamental sense is central to scientific literacy. Science Education, 87(2), 224-240. 

  73. Ohn, J. D. (2021). Research for preparing criteria for the development of the 2022 Revised National Curriculum. In Proceedings of the Public Hearing for Research for Preparing Major Features of the General Guideline of the 2022 Revised National Curriculum (pp. 67-84). 

  74. Organisation for Economic Co-operation and Development [OECD] (2000). Measuring Student Knowledge and Skills: The PISA 2000 Assessment of Reading, Mathematical, and Scientific Literacy. Paris: OECD. 

  75. Organisation for Economic Co-operation and Development [OECD] (2001). Knowledge and Skills for Life: First Results from the OECD Programme for International Student Assessment (PISA) 2000. Paris: OECD. 

  76. Organisation for Economic Co-operation and Development [OECD]. (2005). The Definition and Selection of Key Competencies: Executive Summary. Paris: OECD. 

  77. Organisation for Economic Co-operation and Development [OECD] (2006). Assessing Scientific, Reading, and Mathematical Literacy: A Framework for PISA 2006. Paris: OECD. 

  78. Organisation for Economic Co-operation and Development [OECD] (2009). PISA 2009 Assessment Framework: Key Competencies in Reading, Mathematics, and Science. Paris: OECD. 

  79. Organisation for Economic Co-operation and Development [OECD] (2013). PISA 2012 Assessment and Analytical Framework: Mathematics, Reading, Science, Problem Solving and Financial Literacy. Paris: OECD. 

  80. Organisation for Economic Co-operation and Development [OECD] (2017). PISA 2015 Assessment and Analytical Framework: Science, Reading, Mathematic, Financial Literacy and Collaborative Problem Solving (revised ed.). Paris: OECD. 

  81. Organisation for Economic Co-operation and Development [OECD] (2019a). OECD Future of Education and Skills 2030: OECD Learning Compass 2030 - A Series of Concept Notes. Paris: OECD. 

  82. Organisation for Economic Co-operation and Development [OECD] (2019b). PISA 2018 Assessment and Analytical Framework.. Paris: OECD. 

  83. Organisation for Economic Co-operation and Development [OECD] (2020). Curriculum Overload: A Way Forward. Paris: OECD. 

  84. Orpwood, G. (2001). The role of assessment in science curriculum reform. Assessment in Education: Principles, Policy & Practice, 8(2), 135-151. 

  85. Park, J. (2016). Discussions about the three aspects of scientific literacy: Focus on integrative understanding, settlement in curriculum, and civid education. Journal of the Korean Association for Science Education, 36(3), 413-422. 

  86. Park, J., Yoon, H. -G., & Kwon, S. (2019). Suggesting a model of science competency and applying it to science curriculum. Journal of the Korean Association for Science Education, 39(2), 207-220. 

  87. Park, S. I., Lim, C. I., Lee, J. K., Choi, J. I., Lim, J. H., ..., Lee, J. E. (2012). Principles and Applications of Educational Technology. Paju: Kyoyookbook. 

  88. Park, S. J. (ed.) (1985). Science Education. Seoul: Kyoyookbook. 

  89. Park, S. J., Kim, D. S., Kim, Y. S., Woo, K. H., Lee, J. Y., & Han, B. S. (1983). Educational anticipation of general science museum and its proceeding methods. National Science Museum. 

  90. Presidential Commission on Education Reform [PCER] (1996). Education Reform Report for Establishing New Education System. (Seoul: PCER). 

  91. Research Group of the Core Competences for Chinese Students' Development (2016). The Core Competences for Chinese Students' Development [中??生?展核心素?]. Beijing: Beijing Normal University Press. 

  92. Roberts, D. A. (2007). Scientific literacy/science literacy. In Abell, S. K., & Lederman, N. G. (Eds.), Handbook of Research in Science Education (pp. 729-780). Mahwah, NJ: Lawrence Erlbaum. 

  93. Roberts, D. A., & Bybee, R. W. (2014). Scientific literacy, science literacy, and science education. In Lederman, N. G., & Abell, S. K. (Eds.) Handbook of Research on Science Education, Volume II (pp. 559-572). Routledge. 

  94. Ryder, J. (2001). Identifying science understanding for functional scientific literacy. Studies in Science Education, 36(1), 1-44. 

  95. Ryder, J., & Banner, I. (2013). School teachers' experiences of science curriculum reform. International Journal of Science Education, 35(3), 490-514. 

  96. Sadler, T. D., & Zeidler, D. L. (2009). Scientific literacy, PISA, and socioscientific discourse: Assessment for progressive aims of science education. Journal of Research in Science Teaching, 46(8), 909-921. 

  97. Seo, K (2020). Dilemmas of competecy-based curriculum. The Journal of Curriculum Studies, 38(4), 5-31. 

  98. Seoul National University Education Research Institute [SNUERI] (1994). The Dictionary of Educational Studies (revised ed.). Seoul: Haudongsul. 

  99. Seoul National University Education Research Institute [SNUERI] (1998). The Encyclopedia of Education. Seoul: Haudongsul. 

  100. Sewell Jr, W. H. (1992). A theory of structure: Duality, agency, and transformation. American Journal of Sociology, 98(1), 1-29. 

  101. Shamos, M. (1995). The Myth of Scientific Literacy. Rutgers Yniversity Press. 

  102. Shin Y. (2021). The process of competence-fostering science curricular restructuring and ways of elementary-secondary science curricular content. In Proceedings of the Public Hearing for Competence-fostering Science Curricular Restructuring Research (pp. 2-14). 

  103. Sinnema, C., & Aitken, G. (2013). Emerging international trends in curriculum. In Prestley, M., & Biesta, G. (Eds.). Reinventing Curriculum (pp. 141-163). Bloomsbury Academic. 

  104. Snaza, N. (2009). Thirteen theses on the question of state in curriculum studies. In Malewski, E. (Ed.). Curriculum Studies Handbook - The Next Moment (pp. 61-80). Routledge. 

  105. So, K. -H. (2004). Curriculum Development - Major Issues and New Approaches -. Seoul: Kyoyookbook. 

  106. So, K. -H. (2007). 'Competency' in the context of schooling: It's meaning and curricular implications. The Journal of Curriculum Studies, 25(3), 1-21. 

  107. So, K. -H. (2017). Understanding Curriculum. Paju: Kyoyookbook. 

  108. Stuckey, M., Hofstein, A., Mamlok-Naaman, R., & Eilks, I. (2013). The meaning of 'relevance' in science education and its implications for the science curriculum. Studies in Science Education, 49(1), 1-34. 

  109. Takayama, K. (2007). A nation at risk crosses the Pacific: Transnational borrowing of the US crisis discourse in the debate on education reform in Japan. Comparative Education Review, 51(4), 423-446. 

  110. Turner, S. (2008). School science and its controversies; or, whatever happened to scientific literacy?. Public Understanding of Science, 17(1), 55-72. 

  111. Ufer, S., & Neumann, K. (2018). Measuring competencies. In Fischer, C. F., Hmelo-Silver, S. G., & Reimann, P. (Eds.). International Handbook of the Learning Sciences (pp. 433-443). New York, NY: Routledge. 

  112. Valladares, L. (2021). Scientific literacy and social transformation. Science & Education, 30(3), 557-587. 

  113. Wheelahan, L. (2007). How competency-based training locks the working class out of powerful knowledge: A modified Bernsteinian analysis. British Journal of Sociology of Education, 28(5), 637-651. 

  114. White, R. & Gunstone, R. (1992). Probing Understanding. London. The Falmer Press. 

  115. Wiggins, G., & McTighe, J. (2005). Understanding by Design (expanded 2nd ed.). VA: ASCD. 

  116. Willbergh, I. (2015). The problems of 'competence' and alternatives from the Scandinavian perspective of Bildung. Journal of Curriculum Studies, 47(3), 334-354. 

  117. Williamson, B. (2013). The Future of the Curriculum - School Knowledge in the Digital Age. Cambridge, MA: MIT Press. 

  118. Wittgenstein, L. (2010). Philosophical Investigations. John Wiley & Sons. 

  119. Yager, R. E. (1992). What we did not learn from the 60s about science curriculum reform. Journal of Research in Science Teaching, 29(8), 905-910. 

  120. Yao, J. X., & Guo, Y. Y. (2018). Core competences and scientific literacy: the recent reform of the school science curriculum in China. International Journal of Science Education, 40(15), 1913-1933. 

  121. Yates, L., & Millar, V. (2016). 'Powerful knowledge' curriculum theories and the case of physics. The Curriculum Journal, 27(3), 298-312. 

  122. Young, M. (2008) Bringing Knowledge Back in: From Social Constructivism to Social Realism in the Sociology of Education. Routledge. 

  123. Young, M., & Muller, J. (2013). On the powers of powerful knowledge. Review of Education, 1(3), 229-250. 

  124. Young, M., & Muller, J. (2015). Curriculum and the Specialization of Knowledge. London, Routledge. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

FREE

Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로