$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Ru 촉매에서의 암모니아 부분산화에 대한 연구
A Study on Ammonia Partial Oxidation over Ru Catalyst 원문보기

한국수소 및 신에너지학회 논문집 = Transactions of the Korean Hydrogen and New Energy Society, v.33 no.6, 2022년, pp.786 - 794  

이상호 (한국기계연구원 친환경에너지변환연구부 모빌리티동력연구실) ,  장형준 (한국기계연구원 친환경에너지변환연구부 모빌리티동력연구실) ,  박철웅 (한국기계연구원 친환경에너지변환연구부 모빌리티동력연구실) ,  오세철 (한국기계연구원 친환경에너지변환연구부 모빌리티동력연구실) ,  이선엽 (한국기계연구원 친환경에너지변환연구부 모빌리티동력연구실) ,  김용래 (한국기계연구원 친환경에너지변환연구부 모빌리티동력연구실)

Abstract AI-Helper 아이콘AI-Helper

Green ammonia is a promising renewable energy carrier. Green ammonia can be used in various energy conversion devices (e.g., engine, fuel cell, etc.). Ammonia has to be fed with hydrogen for start-up and failure protection of some energy conversion devices. Ammonia can be converted into hydrogen by ...

주제어

참고문헌 (17)

  1. J. H. Woo, T. Y. Kim, J. E. Kim, B. O. Cho, S. Y. Jung, S. M. Park, S. C. Lee, and J. C. Kim, "Ni catalyst properties for ammonia reforming: comparison of Ni content and space velocity", Trans. Korean Hydrogen New Energy Soc., Vol. 32, No. 6, 2021, pp. 464469, doi: https://doi.org/10.7316/KHNES.2021.32.6.464. 

  2. C. Arnaiz del Pozo and S. Cloete, "Technoeconomic assessment of blue and green ammonia as energy carriers in a lowcarbon future", Energy Conversion and Management, Vol. 255, 2022, pp. 115312, doi: https://doi.org/10.1016/j.enconman.2022.115312. 

  3. P. Dimitriou and R. Javaid, "A review of ammonia as a compression ignition engine fuel", International Journal of Hydrogen Energy, Vol. 45, No. 11, 2020, pp. 70987118, doi: https://doi.org/10.1016/j.ijhydene.2019.12.209. 

  4. S. Giddey, S. P. S. Badwal, C. Munnings, and M. Dolan, "Ammonia as a renewable energy transportation media", ACS Sustainable Chemistry & Engineering, Vol. 5, No. 11, 2017, pp. 1023110239, doi: https://doi.org/10.1021/acssuschemeng.7b02219. 

  5. R. Cavaliere da Rocha, M. Costa, and X. S. Bai, "Chemical kinetic modelling of ammonia/hydrogen/air ignition, premixed flame propagation and NO emission", Fuel, Vol. 246, 2019, pp. 2433, doi: https://doi.org/10.1016/j.fuel.2019.02.102. 

  6. S. Frigo and R. Gentili, "Analysis of the behaviour of a 4stroke Si engine fuelled with ammonia and hydrogen", International Journal of Hydrogen Energy, Vol. 38, No. 3, 2013, pp. 16071615, doi: https://doi.org/10.1016/j.ijhydene.2012.10.114. 

  7. S. Frigo, R. Gentili, G. Ricci, G. Pozzana, and C. Comotti, "Experimental result using ammonia plus hydrogen in a S.I. engine", Lecture Notes in Electrical Engineering, Vol. 191, 2013, pp. 6576, doi: https://doi.org/10.1007/9783642337772. 

  8. S. Frigo, R. Gentili, and F. De Angelis, "Further insight into the possibility to fuel a SI engine with ammonia plus hydrogen. In: SAE/JSAE 2014 Small Engine Technology Conference & Exhibition", SAE Technical Paper, Vol. 32, No. 82, 2014, pp. 2014320082, doi: https://doi.org/10.4271/2014320082. 

  9. M. Comotti and S. Frigo, "Hydrogen generation system for ammonia-hydrogen fuelled internal combustion engines", International Journal of Hydrogen Energy, Vol. 40, No. 33, 2015, pp. 1067310686, doi: https://doi.org/10.1016/j.ijhydene.2015.06.080. 

  10. M. Koike, T. Suzuoki, T. Takeuchi, T. Homma, S. Hariu, and Y. Takeuchi, "Coldstart performance of an ammonia-fueled spark ignition engine with an onboard fuel reformer", International Journal of Hydrogen Energy, Vol. 46, No. 50, 2021, pp. 2568925698, doi: https://doi.org/10.1016/j.ijhydene.2021.05.052. 

  11. J. Yang, A. Fathi Salem Molouk, T. Okanishi, H. Muroyama, T. Matsui, and K. Eguchi, "A stability study of ni/yttria-stabilized zirconia anode for direct ammonia solid oxide fuel cells", ACS Applied Materials & Interfaces, Vol. 7, No. 51, 2015, pp. 2870128707, doi: https://doi.org/10.1021/acsami.5b11122. 

  12. M. Kishimoto, H. Muroyama, S. Suzuki, M. Saito, T. Koide, Y. Takahashi, T. Horiuchi, H. Yamasaki, S. Matsumoto, H. Kubo, N. Takahashi, A. Okabe, S. Ueguchi, M. Jun, A. Tateno, T. Matsuo, T. Matsui, H. Iwai, H. Yoshida, and K. Eguchi, "Development of 1 kWclass ammoniafueled solid oxide fuel cell stack", Fuel Cells, Vol. 20, No. 1, 2020, pp. 8088, doi: https://doi.org/10.1002/fuce.201900131. 

  13. T. Okanishi, K. Okura, A. Srifa, H. Muroyama, T. Matsui, M. Kishimoto, M. Saito, H. Iwai, H. Yoshida, M. Saito, T. Koide, H. Iwai, S. Suzuki, Y. Takahashi, T. Horiuchi, H. Yamasaki, S. Matsumoto, S. Yumoto, H. Kubo, J. Kawahara, A. Okabe, Y. Kikkawa, T. Isomura, and K. Eguchi, "Comparative study of ammonia-fueled solid oxide fuel cell systems", Fuel Cells, Vol. 17, No. 3, 2017, pp. 383390, doi: https://doi.org/10.1002/fuce.201600165. 

  14. B. Stoeckl, M. Preininger, V. Subotic, H. Schroettner, P. Sommersacher, M. Seidl, S. Megel, and C. Hochenauer, "Ammonia as promising fuel for solid oxide fuel cells: experimental analysis and performance evaluation", ECS Transactions, Vol. 91, No. 1, 2019, pp. 16011610, doi: https://doi.org/10.1149/09101.1601ecst. 

  15. S. Yoon, S. Lee, and J. Bae, "DDevelopment of a self-sustaining kWeclass integrated diesel fuel processing system for solid oxide fuel cells", International Journal of Hydrogen Energy, Vol. 36, No. 16, 2011, pp. 1030210310, doi: https://doi.org/10.1016/j.ijhydene.2010.10.001. 

  16. J. Cha, Y. S. Jo, H. Jeong, J. Han, S. W. Nam, K. H. Song, and C. W. Yoon, "Ammonia as an efficient COXfree hydrogen carrier: fundamentals and feasibility analyses for fuel cell applications", Applied Energy, Vol. 224, 2018, pp. 194204, doi: https://doi.org/10.1016/j.apenergy.2018.04.100. 

  17. S. Lee, Y. Choi, C. Park, H. Kim, Y. D. Lee, and Y. S. Kim, "A study on ammonia reforming catalyst and reactor design for 10 kW class ammonia-hydrogen dualfuel engine", Trans. of the Korean Hydrogen and New Energy Society, Vol. 31, No. 4, 2020, pp. 372379. doi: http://dx.doi.org/10.7316/KHNES.2020.31.4.372. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

FREE

Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로