$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

경기도 화성시 벼 재배지의 기후스마트 농업 기반의 평가
Climate-Smart Agriculture(CSA)-Based Assessment of a Local Rice Cultivation in Hwaseong-city, Gyeonggi-do 원문보기

한국환경농학회지 = Korean journal of environmental agriculture, v.41 no.1, 2022년, pp.32 - 40  

주옥정 (경기도농업기술원 연구개발국 환경농업연구과) ,  소호섭 (경기도농업기술원 연구개발국 환경농업연구과) ,  이상우 (경기도농업기술원 연구개발국 환경농업연구과) ,  이영순 (경기도농업기술원 연구개발국 작물연구과)

Abstract AI-Helper 아이콘AI-Helper

BACKGROUND: Climate-smart agriculture (CSA) has been proposed for sustainable agriculture and food security in an agricultural ecosystem disturbed by climate change. However, scientific approaches to local agricultural ecosystems to realize CSA are rare. This study attempted to evaluate the weather ...

주제어

참고문헌 (28)

  1. Lipper L, Thornton P, Campbell BM, Baedeker T, Braimoh A, Bwalya M, Caron P, Cattaneo A, Garrity D et al. (2014) Climate-smart agriculture for food security. Nature Climate Change, 4(12), 1068-1072. https://doi.org/10.1038/nclimate2437. 

  2. Shin YK, Kim KS (1994) Methods for measurement of methane and nitrous oxide emissions from agricultural fields. Korean Journal of Environmental Agriculture, 13(3), 359-372. 

  3. Ko JY, Kang HW, Kang UG, Park HM, Lim DK, Park KB (1998) The effects of nitrogen fertilizers and cultural patterns on methane emissions from rice paddy fields. Korean Journal of Environmental Agriculture, 17(3), 227-233. 

  4. Kim GY, Park SI, Song BH, Shin YK (2002) Emission characteristics of methane and nitrous oxide by management of water and nutrient in a rice paddy soil. Korean Journal of Environmental Agriculture, 21(2), 136-143. https://doi.org/10.5338/KJEA.2002.21.2.136. 

  5. Shin YK, Lee YS, Ahn JW, Koh MH, Eom KC (2003) Seasonal change of rice-mediated methane emission from a rice paddy under different water management and organic amendments. Korean Journal of Environmental Agriculture, 36(1), 41-49. 

  6. Muhammad AA, Lee CH, Kim PJ (2007) Effect of phosphogypsum on reduction of methane emission from rice paddy soil. Korean Journal of Environmental Agriculture, 26(2), 131-140. https://doi.org/10.5338/KJEA.2007.26.2.131. 

  7. Gwon HS, Kim GY, Choi EJ, Lee SI, Lee JS (2019) Evaluation of greenhouse gas emission characteristics and intensity by management of water and nutrients in rice paddy soil during cropping season. Journal of Climate Change Research, 10(4), 351-359. https://doi.org/10.15531/KSCCR.2019.10.4.351. 

  8. Lim SS, Choi WJ, Kim HY (2012) Fertilizer and organic inputs effects on CO 2 and CH 4 emission from a soil under changing water regimes. Korean Journal of Environmental Agriculture, 31(2), 104-112. https://doi.org/10.5338/KJEA.2012.31.2.104. 

  9. Park WJ, Choi YH, Shin MH, Won CH, Park KW, Choi JD (2011) Evaluation on feasibility of system of rice intensification (SRI) for reduction of irrigation water in South Korea. Journal of the Korean Society of Agricultural Engineers, 53(4), 49-57. https://doi.org/10.5389/KSAE.2011.53.4.049. 

  10. Seo JY, Park BK, Park WJ, Lee SI, Choi YH, Shin MH, Choi JD (2018) Effect of SRI water management on the reduction of greenhouse-gas emissions and irrigation water supply in paddy. Journal of Korean Society of Agricultural Engineers, 60(1), 79-87. 

  11. Yun SH, Lee JT (2001) Climate change impacts on optimum ripening periods of rice plant and its countermeasure in rice cultivation. Korean Journal of Agricultural and Forest Meteorology, 3(1), 55-70. 

  12. Kim YH, Kim HD, Han SW, Choi JY, Koo JM, Chung U, Kim JY, Yun JI (2002) Using spatial data and crop growth modeling to predict performance of South Korean rice varieties grown in western coastal plains in North Korea. Korean Journal of Agricultural and Forest Meteorology, 4(4), 224-236. 

  13. Kim CS, Lee JS, Ko JY, Yun ES, Yeo US, Lee JH, Kwak DY, Shin MS, Oh BG (2007) Evaluation of optimum rice heading period under recent climatic change in Yeongnam area. Korean Journal of Agricultural and Forest Meteorology, 9(1), 17-28. https://doi.org/10.5532/KJAFM.2007.9.1.017. 

  14. Seo YH, Lee AS, Cho BO, Kang AS, Jeong BC, Jung YS (2010) Adaptation study of rice cultivation in Gangwon Province to climate change. Korean Journal of Agricultural and Forest Meteorology, 12(2), 143-151. https://doi.org/10.5532/KJAFM.2010.12.2.143. 

  15. Lee CK, Kim JW, Shon JY, Yang WH, Yoon YH, Choi KJ, Kim KS (2012) Impacts of climate change on rice production and adaptation method in Korea as evaluated by simulation study. Korean Journal of Agricultural and Forest Meteorology, 14(4), 207-221. https://doi.org/10.5532/KJAFM.2012.14.4.207. 

  16. Kim JH, Sang W, Shin P, Cho H, Seo MC, Yoo BH, Kim KS (2015) Evaluation of regional climate scenario data for impact assessment of climate change on rice productivity in Korea. Journal of Corp Science and Biotechnology, 18(4), 257-264. https://doi.org/10.1007/s12892-015-0103-z. 

  17. Sang WG, Cho HS, Kim JH, Shin P, Baek JK, Lee YH, Cho JI, Seo MC (2018) The change of grain quality and starch assimilation of rice under future climate conditions according to RCP 8.5 scenario. Korean Journal of Agricultural and Forest Meteorology, 20(4), 296-304. https://doi.org/10.5532/KJAFM.2018.20.4.296. 

  18. Seo MC, Kim JH, Choi KJ, Lee YH, Sang WG, Cho HS, Cho JI, Shin P, Baek JK (2020) Review on adaptability of rice varieties and cultivation technology according to climate change in Korea. Korean Journal of Crop Science, 65(4), 327-338. https://doi.org/10.7740/kjcs.2020.65.4.327. 

  19. Kim HY, Kim J, Choi SW, Indrawati YM (2016) The study of MP-MAS utilization to support decision-making for climate-smart agriculture in rice farming. Korean Journal of Agricultural and Forest Meteorology, 18(4), 378-388. https://doi.org/10.5532/KJAFM.2016.18.4.378. 

  20. Indrawati YM, Kim J, Kang M (2018) Assessment of ecosystem productivity and efficiency using flux measurement over Haenam Farmland site in Korea (HFK). Korean Journal of Agricultural and Forest Meteorology, 20(1), 57-72. https://doi.org/10.5532/KJAFM.2018.20.1.57. 

  21. Lindau, CW, Bollich, PK, Delaune, RD, Patrick WH, Law VJ (1991) Effect of urea fertilizer and environmental factors on CH4 emission from a Louisiana, USA rice field. Plant and Soil, 136, 195-203. https://doi.org/10.1007/BF02150050. 

  22. Smita S, Singh JS, Kashyap AK (1999) Methane flux from irrigated rice fields in relation to crop growth and N-fertilization. Soil Biology and Biochemistry, 31, 1219-1228. https://doi.org/10.1016/S0038-0717(99)00027-9. 

  23. Kim GY, Jeong HC, Ju OJ, Kim HK, Park JH, Gwon HS, and Kim PJ (2013) Establishment of baseline emission factor of methane in Korean rice paddy soil. Korean Journal of Environmental Agriculture, 32(4), 359-365. https://doi.org/10.5338/KJEA.2013.32.4.359. 

  24. Yun SH, Lee JT (2001) Climate change impacts on optimum ripening periods of rice plant and its countermeasure in rice cultivation. Korean Journal of Agricultural and Forest Meteorology, 3(1), 55-70. 

  25. Shin JH, Han CM, Kwon JB, Kim SK (2019) Effect of climate on the yield of different maturing rice in the Yeongnam inland area over the past 20 years. Korean Journal of Crop Science, 64(3), 193-203. https://doi.org/10.7740/kjcs.2019.64.3.193. 

  26. Kim JH, Sang WG, Shin P, Cho HS, Seo MC (2017) A meteorological analysis on high rice yield in 2015 in South Korea. Korean Journal of Agricultural and Forest Meteorology, 19(2), 54-61. https://doi.org/10.5532/KJAFM.2017.19.2.54. 

  27. Cicerone RJ, Shetter JD (1981) Sources of atmospheric methane: measurements in rce paddies and a discussion. Journal of Geophysical Research, 86, 7203-7209. https://doi.org/10.1029/JC086iC08p07203. 

  28. Wassmann R, Aulakh MS (2000) The role of rice plants in regulating mechanisms of methane missions. Biology and Fertility of Soils, 31(1), 20-29. https://doi.org/10.1007/s003740050619. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로