$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

NiCl2 첨착된 흡착제 상에서 암모니아의 흡착 및 재생 특성
Adsorption and Regeneration Characteristics of Ammonia on NiCl2 Impregnated Adsorbents 원문보기

공업화학 = Applied chemistry for engineering, v.33 no.2, 2022년, pp.202 - 209  

임정현 (충남대학교 응용화학공학과) ,  송강 (충남대학교 응용화학공학과) ,  박주식 (한국에너지기술연구원) ,  김영호 (충남대학교 응용화학공학과)

초록

암모니아에 대한 흡착 성능 향상을 목적으로 NiCl2 첨착에 적합한 지지체 및 NiCl2의 첨착량이 암모니아 흡착능에 미치는 영향을 연구하였다. NiCl2는 초음파 조사 하에서 여러 지지체의 표면 위로 첨착하였으며, NiCl2가 첨착된 흡착제의 물리화학적 특성 및 암모니아 흡착 성능을 관찰하였다. 다양한 지지체들 중, 가장 넓은 비표면적을 갖는 활성탄위로 NiCl2를 첨착했을 때, 암모니아의 흡착능이 가장 우수한 것으로 나타났다. 활성탄 위로 NiCl2의 첨착량을 변화시킨 결과, 2 mmol·g-1을 첨착한 NiCl2(2.0)/AC 흡착제가 5.977 mmol·g-1의 가장 우수한 암모니아 흡착 용량을 나타냈다. 또한 저온 열을 이용할 수 있는 조건하 5회의 반복 순환 시험에서 흡착 용량이 거의 일정한 수준으로 유지됨을 나타내어 흡착제의 재생 능력이 우수함을 알 수 있었다.

Abstract AI-Helper 아이콘AI-Helper

Effects of the support and amount of NiCl2 on ammonia adsorption capacity were investigated to improve the ammonia adsorption performance. NiCl2 was impregnated onto the surface of various supports under ultrasonic irradiation. The physicochemical properties and ammonia adsorption performance of NiC...

주제어

표/그림 (11)

참고문헌 (44)

  1. I. P. Jain, Hydrogen the fuel for 21st century, Int. J. Hydrog. Energy, 34, 7368-7378 (2009). 

  2. H. K. Park and J. S. Park, Simulation study of hydrogen liquefaction process using helium refrigeration cycle, Appl. Chem. Eng., 31, 153-163 (2020). 

  3. H. T. Hwang and A. Varma, Hydrogen storage for fuel cell vehicles, Curr. Opin. Chem. Eng., 5, 42-48 (2014). 

  4. H. Muroyama, C. Saburi, T. Matsui, and K. Eguchi, Ammonia decomposition over Ni/La 2 O 3 catalyst for on-site generation of hydrogen, Appl. Catal. A: Gen., 443-444, 119-124 (2012). 

  5. J. Andersson and S. Gronkvist, Large-scale storage of hydrogen, Int. J. Hydrog. Energy, 44, 11901-11919 (2019). 

  6. S. Chatterjee, R. K. Parsapur, and K. W. Huang, Limitations of ammonia as a hydrogen energy carrier for the transportation sector, ACS Energy Lett., 6, 4390-4394 (2021). 

  7. C. Smith and L. T. Murciano, Exceeding single-pass equilibrium with integrated absorption separation for ammonia synthesis using renewable energy-redefining the Haber-Bosch loop, Adv. Energy Mater., 11, 2003845 (2021). 

  8. M. Aziz, A. T. Wijayanta, and A. B. D. Nandiyanto, Ammonia as effective hydrogen storage: A review on production, storage and utilization, Energies, 13, 3062 (2020). 

  9. L. Lin, Y. Tian, W. Su, Y. Luo, C. Chen, and L. Jiang, Technoeconomic analysis and comprehensive optimization of an on-site hydrogen refueling station system using ammonia: Hybrid hydrogen purification with both high H 2 purity and high recovery, Sustain. Energy Fuels, 4, 3006-3017 (2020). 

  10. M. J. Kale, D. K. Ojha, S. Biswas, J. I. Militti, A. V. McCormick, J. H. Schott, P. J. Dauenhauer, and E. L. Cussler, Optimizing ammonia separation via reactive absorption for sustainable ammonia synthesis, ACS Appl. Energy Mater., 3, 2576-2584 (2020). 

  11. S. Mukherjee, S. V. Devaguptapu, A. Sviripa, C. R. F. Lund, and G. Wu, Low-temperature ammonia decomposition catalysts for hydrogen generation, Appl. Catal. B: Environ., 226, 162-181 (2018). 

  12. Z. Du, D. Denkenberger, and J. M. Pearce, Solar photovoltaic powered on-site ammonia production for nitrogen fertilization, Sol. Energy, 122, 562-568 (2015). 

  13. F. Schuth, R. Palkovits, R. Schlogl, and D. S. Su, Ammonia as a possible element in an energy infrastructure: Catalysts for ammonia decomposition, Energy Environ. Sci., 5, 6278-6289 (2012). 

  14. S. F. Yin, B. Q. Xu, X. P. Zhou, and C. T. Au, A mini-review on ammonia decomposition catalysts for on-site generation of hydrogen for fuel cell applications, Appl. Catal. A: Gen., 277, 1-9 (2004). 

  15. K. E. Lamb, M. D. Dolan, and D. F. Kennedy, Ammonia for hydrogen storage; A review of catalytic ammonia decomposition and hydrogen separation and purification, Int. J. Hydrog. Energy, 11, 3580-3593 (2019). 

  16. A. A. Kukhun, H. T. Hwang, and A. Varma, A Comparison of ammonia borane dehydrogenation methods for proton-exchange-membrane fuel cell vehicles: Hydrogen yield and ammonia formation and its removal, Ind. Eng. Chem. Res., 50, 8824-8835 (2011). 

  17. C. A. D. Pozo and S. Cloete, Techno-economic assessment of blue and green ammonia as energy carriers in a low-carbon future, Energy Convers. Manag., 255, 115312 (2022). 

  18. W. Zheng, J. Hu, S. Rappeport, Z. Zheng, Z. Wang, Z. Han, J. Langer, and J. Economy, Activated carbon fiber composites for gas phase ammonia adsorption, Microporous Mesoporous Mater., 234, 146-154 (2016). 

  19. T. J. Bandosz and C. Petit, On the reactive adsorption of ammonia on activated carbons modified by impregnation with inorganic compounds, J. Colloid Interface Sci., 338, 329-345 (2009). 

  20. M. Ghauri, M. Tahir, T. Abbas, M. S. Khurram, and K. Shehzad, Adsorption studies for the removal of ammonia by thermally activated carbon, Sci. Int., 24, 411-414 (2012). 

  21. A. J. Rieth and M. Dinca, Controlled gas uptake in metal-organic frameworks with record ammonia sorption, J. Am. Chem. Soc., 140, 3461-3466 (2018). 

  22. Y. Khabzina and D. Farrusseng, Unravelling ammonia adsorption mechanisms of adsorbents in humid conditions, Microporous Mesoporous Mater., 265, 143-148 (2018). 

  23. W. Ouyang, S. Zheng, C. Wu, X. Hu, R. Chen, L. Zhuo, and Z. Wang, Dynamic ammonia adsorption by FAU zeolites to below 0.1 ppm for hydrogen energy applications, Int. J. Hydrog. Energy, 46, 32559-32569 (2021). 

  24. V. E. Sharonov and Y. I. Aristov, Ammonia adsorption by MgCl 2 , CaCl 2 and BaCl 2 confined to porous alumina: The fixed bed adsorber, React. Kinet. Catal. Lett., 85, 183-188 (2005). 

  25. C. J. Yeom and Y. H. Kim, Adsorption of ammonia using mesoporous alumina prepared by a templating method, Environ. Eng. Res., 22, 401-406 (2017). 

  26. J. Helminen, J. Helenius, and E. Paatero, Adsorption equilibria of ammonia gas on inorganic and organic sorbents at 298.15 K, J. Chem. Eng. Data, 46, 391-399 (2001). 

  27. C. Y. Liu and K. I. Aika, Modification of active carbon and zeolite as ammonia separation materials for a new de-NO x process with ammonia on-site synthesis, Res. Chem. Intermed., 28, 409-417 (2002). 

  28. C. Y. Liu and K. I. Aika, Absorption and desorption behavior of ammonia with alkali earth metal halide and mixed halide, Chem. Lett., 31, 798-799 (2002). 

  29. M. Kubota, K. Matsuo, R. Yamanouchi, and H. Matsuda, Absorption and desorption characteristics of NH 3 with metal chlorides for ammonia storage, J. Chem. Eng. Japan, 47, 542-548 (2014). 

  30. T. Zhang, H. Miyaoka, H. Miyaoka, T. Ichikawa, and Y. Kojima, Review on ammonia absorption materials: Metal hydrides, halides, and borohydrides, ACS Appl. Energy Mater., 1, 232-242 (2018). 

  31. J. Wang, W. Jiang, Z. Zhang, and D. Long, Mesoporous carbon beads impregnated with transition metal chlorides for regenerative removal of ammonia in the atmosphere, Ind. Eng. Chem. Res., 56, 3283-3290 (2017). 

  32. C. Smith, M. Malmali, C. Y. Liu, A. V. McCormick, and E. L. Cussler, Rates of ammonia absorption and release in calcium chloride, ACS Sustain. Chem. Eng., 6, 11827-11835 (2018). 

  33. T. Aoki, T. Ichikawa, H. Miyaoka, and Y. Kojima, Thermodynamics on ammonia absorption of metal halides and borohydrides, J. Phys. Chem. C, 118, 18412-18416 (2014). 

  34. X. Pan, M. Zhu, H. Mei, Z. Liu, and T. Shen, Ammonia absorption enhancement by metal halide impregnated hollow mesoporous silica spheres, ChemistrySelect, 5, 5720-5725 (2020). 

  35. J. H. Park, H. U. Rasheed, K. H. Cho, H. C. Yoon, and K. B. Yi, Effects of magnesium loading on ammonia capacity and thermal stability of activated carbons, Korean J. Chem. Eng., 37, 1029-1035 (2020). 

  36. C. Petit, C. Karwacki, G. Peterson, and T. J. Bandosz, Interactions of ammonia with the surface of microporous carbon impregnated with transition metal chlorides, J. Phys. Chem. C, 111, 12705-12714 (2007). 

  37. K. Song, J. H. Lim, C. G. Kim, C. S. Park, and Y. H. Kim, Enhancement of ammonia adsorption performance by impregnation of metal chlorides on surface-modified activated carbon, Appl. Chem. Eng., 32, 671-678 (2021). 

  38. H. S. Hwang, I. Park, I. K. Lee, W. J. Choi, S. I. Lee, and J. Y. Lee, Synthesis and characterization of carbon dioxide sorbent by using polyethyleneimine impregnated fumed silica particles, Appl. Chem. Eng., 23, 383-387 (2012). 

  39. J. U. Han, D. J. Kim, M. Kang, J. W. Kim, J. M. Kim, and J. E. Yie, Study of CO 2 adsorption characteristics on acid treated and LiOH impregnated activated carbons, J. Korean Ind. Eng. Chem., 16, 312-316 (2005). 

  40. A. Afriani, I. Abdullah, and Y. K. Krisnandi, Synthesis of NiCl 2 impregnated mesoporous carbon and its adsorption activity on CO 2 , AIP Conf. Proc., 2349, 020048 (2021). 

  41. Y. Chu, Y. W. Li, Q. B. Wu, J. Hu, Q. Q. Tian, H. L. Hu, and Y. P. Zhu, In-situ synthesis and discharge performance of Ni-NiCl 2 composite as cathode materials for thermal batteries, J. Inorg. Mater., 31, 992-996 (2016). 

  42. N. J. A. Rahman, A. Ramli, K. Jumbri, and Y. Uemura, Tailoring the surface area and the acid-base properties of ZrO 2 for biodiesel production from Nannochloropsis sp., Sci. Rep., 9, 16223 (2019). 

  43. K. S. Rejitha, T. Ichikawa, and S. Mathew, Thermal decomposition studies of Ni(NH 3 ) 6 X 2 (X Cl, Br) in the solid state using TG-MS and TR-XRD, J. Therm. Anal. Calorim., 103, 515-523 (2011). 

  44. J. Breternitz, Y. E. Vilk, E. Giraud, H. Reardon, T. K. A. Hoang, A. G. Jopek, and D. H. Gregory, Facile uptake and release of ammonia by nickel halide ammines, ChemSusChem, 9, 1312-1321 (2016). 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로