$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Neural Network and Cloud Computing for Predicting ECG Waves from PPG Readings 원문보기

The journal of multimedia information system, v.9 no.1, 2022년, pp.11 - 20  

Kosasih, David Ishak (Department of Computer Engineering, Dongseo University) ,  Lee, Byung-Gook (Department of Computer Engineering, Dongseo University) ,  Lim, Hyotaek (Department of Computer Engineering, Dongseo University)

Abstract AI-Helper 아이콘AI-Helper

In this paper, we have recently created self-driving cars and self-parking systems in human-friendly cars that can provide high safety and high convenience functions by recognizing the internal and external situations of automobiles in real time by incorporating next-generation electronics, informat...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

제안 방법

  • 2. Performance evaluation and analysis of the trained neural network system by comparing the prediction result with the real ECG signal.
  • The objective of our proposed idea is to improve PPG heart rate calculation while also avoiding the implementation of any expensive signal processing algorithm on the wearable device itself. This system will examine several sensors data to predict its corresponding ECG value for the purpose of extracting more precise heart rate data.

대상 데이터

  • Keras library is used for implementing neural network in ECG value predictor. Four hidden layers with 150 neurons each are used in this system. Since ECG value predictor is actually a neural network model for running a regression task, there is only one output neuron which is the corresponding ECG value.
  • As stated in Section 1, ECG value prediction in this system was evaluated by using dataset provided by [17]. In this dataset, 19 records from eight participants are provided. Participants' ages ranged from 22-32 years (mean 26.

이론/모형

  • In order to analyze the agreement between the original or ground truth ECG measurement and the prediction result, bland-altman plot [23] was used.
본문요약 정보가 도움이 되었나요?

참고문헌 (26)

  1. E. J. Benjamin, M. J. Blaha, S. E. Chiuve, M. Cushman, S. R. Das, and R. Deo, et al, "Heart disease and stroke statistics-2017 update: A report from the American Heart Association," Circulation, vol. 135, no. 10, pp. e146-e603, Jan. 2017. 

  2. J. Allen, "Photoplethysmography and its application in clinical physiological measurement," Physiological Measurement, vol. 28, no. 3, Mar. 2007. 

  3. J. Homsy and P. J. Podrid, "Electrocardiography," in H. K. Gaggin and J. L. Jr. Januzzi (eds.), MGH Cardiology Board Review, London: Springer, pp. 580-622, 2014. 

  4. A. M. Alqudah, Q. Qananwah, A. M. K Dagamseh, S. Qazan, A. Albadarneh, and A. Alzyout, "Multiple time and spectral analysis techniques for comparing the PhotoPlethysmography to PiezoelectricPlethysmo graphy with electrocardiography," Medical Hypotheses, vol. 143, p. 109870, Oct. 2020. 

  5. A. A. Kamal, J. B. Harness, G. Irving, and A. J. Mearns, "Skin photoplethysmography - A review," Computer Methods and Programs in Biomedicine, vol. 28, no. 4, pp. 257-269, Apr. 1989. 

  6. D. Castaneda, A. Esparza, M. Ghamari, C. Soltanpur, and H. Nazeran, "A review on wearable photoplethysmography sensors and their potential future applications in health care," International Journal of Biosensors & Bioelectronics, vol. 4, no. 4, pp. 195-202, Aug. 2018. 

  7. M. Kos, X. Li, I. Khaghani-Far, C. M. Gordon, M. Pavel, and H. B. Jimison, "Can accelerometry data improve estimates of heart rate variability from wrist pulse PPG sensors?," in 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Jeju, Korea, Jul. 2017, pp. 1587-1590. 

  8. G. Biagetti, P. Crippa, L. Falaschetti, S. Orcioni, and C. Turchetti, "Reduced complexity algorithm for heart rate monitoring from PPG signals using automatic activity intensity classifier," Biomedical Signal Processing and Control, vol. 52, pp. 293-301, Jul. 2019. 

  9. K. Georgiou, A. V. Larentzakis, N. N. Khamis, G. I. Alsuhaibani, Y. A. Alaska, and E. J. Giallafos, "Can wearable devices accurately measure heart rate variability? A systematic review," Folia Medica (Plovdiv), vol. 60, no. 1, pp. 7-20, Mar. 2018. 

  10. M. T. Petterson, V. L. Begnoche, and J. M. Graybeal, "The effect of motion on pulse oximetry and its clinical significance,"Anesthesia and Analgesia, vol. 105, Suppl. 6. pp. S78-S84, Dec. 2007. 

  11. N. S. Trivedi, A. F. Ghouri, N. K. Shah, E. Lai, and S. J. Barker, "Effects of motion, ambient light, and hypoperfusion on pulse oximeter function," Journal of Clinical Anesthesia, vol. 9, no. 3, pp. 179-183, May 1997. 

  12. J. W. Severinghaus and J. F. Kelleher, "Recent developments in pulse oximetry," Anesthesiology, vol. 76, no. 6. pp. 1018-1038, Jun. 1992. 

  13. J. Kim, T. Lee, J. Kim, and H. Ko, "Ambient light cancellation in photoplethysmogram application using alternating sampling and charge redistribution technique," in Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS), Milan, Italy, Nov. 2015, pp. 6441-6444. 

  14. C. Kim, Y. J. Kim, H. Jung, and D. S. Han, "A real-time heartbeat estimation system using PPG signals," in 2017 IEEE International Conference Consumer Electronics (ICCE), Las Vegas, NV, Jan. 2017, pp. 145-146. 

  15. K. R. Arunkumar and M. Bhaskar, "Heart rate estimation from photoplethysmography signal for wearable health monitoring devices," Biomedical Signal Processing and Control, vol. 50, pp. 1-9, Apr. 2019. 

  16. J. Lee, J. Kim, and M. Shin, "Correlation analysis between electrocardiography (ECG) and photoplethysmogram (PPG) data for driver's drowsiness detection using noise replacement method," Procedia Computer Science, vol. 116, pp. 421-426, 2017. 

  17. D. Jarchi and A. Casson, "Description of a database containing wrist PPG signals recorded during physical exercise with both accelerometer and gyroscope measures of motion," Data, vol. 2, no. 1, pp. 1-13, Dec. 2016. 

  18. M. G. Avram, "Advantages and challenges of adopting cloud computing from an enterprise perspective," Procedia Technology, vol. 12, pp. 529-534, 2014. 

  19. J. Tmamna, E. Ben Ayed, and M. Ben Ayed, "Deep learning for internet of things in fog computing: Survey and open issues," in Proceedings of the 2020 5th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP), Sousse, Tunisia, Sep. 2020, pp.1-6. 

  20. A. L. Maas, A. Y. Hannun, and A. Y. Ng, "Rectifier nonlinearities improve neural network acoustic models," in Proceedings of the 30th International Conference on Machine Learning (ICML), Atlanta, GA, Jun. 2013. 

  21. D. P. Kingma and J. Ba, "Adam: a method for stochastic optimization," in Proceedings of the 3rd International Conference on Learning Representations (ICLR), San Diego, CA, May 2015. 

  22. N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, "Dropout: A simple way to prevent neural networks from overfitting," The Journal Machine Learning. Research, vol. 15, pp. 1929-1958, 2014. 

  23. J. M. Bland and D. G. Altman, "Statistical methods for assessing agreement between two methods of clinical measurement," Lancet, vol. 1, no. 8476, pp. 307-310, Feb. 1986. 

  24. R. Lacuesta, L. Garcia, I. Garcia-Magarino, and J. Lloret, "System to recommend the best place to live based on wellness state of the user employing the heart rate variability," IEEE Access, vol. 5, pp. 10594-10604, May 2017. 

  25. S. B. Nadler, J. H. Hidalgo, and T. Bloch, "Prediction of blood volume in normal human adults," Surgery, vol. 51, no. 2, pp. 224-232, Feb. 1962. 

  26. H. J. M. Lemmens, D. P. Bernstein, and J. B. Brodsky, "Estimating blood volume in obese and morbidly obese patients," Obesity Surgery, vol. 16, no. 6, pp. 773-776, Jun. 2006. 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로