$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Tuberostemonine에 의한 Staphylococcus aureus의 생물막 억제 효과
Inhibitory effects of tuberostemonine on Staphylococcus aureus biofilm 원문보기

한국식품과학회지 = Korean journal of food science and technology, v.54 no.2, 2022년, pp.241 - 246  

염수진 (충남대학교 농업생명과학대학 식품공학과) ,  김승민 (한국방송통신대학교 자연과학대학 생활과학부) ,  권준혁 (충남대학교 농업생명과학대학 식품공학과) ,  정희곤 (충남대학교 농업생명과학대학 식품공학과)

초록
AI-Helper 아이콘AI-Helper

본 연구는 S. aureus에 대한 tuberostemonine의 항균 및 항생물막 효과에 대하여 확인하였다. S. aureus에 대한 tuberostemonine의 생장 저해 효과가 없음을 확인하였으나, crystal violet 염색법과 CLSM 이미지 측정을 통해 tuberostemonine이 유의한 S. aureus 항생물막 효과 가지는 것을 알 수 있었다. S. aureus의 생물막 형성과 분해 관련 유전자인 icaA와 agrA의 발현은 tuberostemonine를 처리하였을 때 유의미하게 각각 감소 또는 증가하는 것으로 나타났다. 따라서 본 연구에서 생물막 형성 저해 및 분해 효과가 확인된 천연화합물인 tuberostemonine은 S. aureus의 내성 발생 위험이 적은 새로운 항생물막제제로서 사용가능 할 것으로 사료된다.

Abstract AI-Helper 아이콘AI-Helper

Antibiotic resistance is a serious problem to food safety as well as human healthcare. To avoid this, there are several approaches for a new class of antibiotic agents that target only production of virulence factors such as biofilm without bacterial growth defect. The objective of this study was to...

주제어

표/그림 (5)

참고문헌 (44)

  1. Andries K, Verhasselt P, Guillemont J, Gohlmann HW, Neefs JM, Winkler H, Van Gestel J, Timmerman P, Zhu M, Lee E. A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science 307: 223-227 (2005) 

  2. Aswathanarayan JB, Vittal RR. Inhibition of biofilm formation and quorum sensing mediated phenotypes by berberine in Pseudomonas aeruginosa and Salmonella typhimurium. RSC Adv. 8: 36133-36141 (2018) 

  3. Aubourg M, Pottier M, Leon A, Bernay B, Dhalluin A, Cacaci M, Torelli R, Ledormand P, Martini C, Sanguinetti M. Inactivation of the response regulator AgrA has a pleiotropic effect on biofilm formation, pathogenesis and stress response in Staphylococcus lugdunensis. Microbiol. Spectr. 10: e01598-01521 (2022) 

  4. Bai JR, Wu YP, Elena G, Zhong, Gao KH. Insight into the effect of quinic acid on biofilm formed by Staphylococcus aureus. RSC Adv. 9: 3938-3945 (2019) 

  5. Brem B, Seger C, Pacher T, Hofer O, Vajrodaya S, Greger H. Feeding deterrence and contact toxicity of Stemona alkaloids a source of potent natural insecticides. J. Agric. Food Chem. 50: 6383-6388 (2002) 

  6. da Cunha MG, Sardi JdCO, Freires IA, Franchin M, Rosalen PL. Antimicrobial, anti-adherence and antibiofilm activity against Staphylococcus aureus of a 4-phenyl coumarin derivative isolated from Brazilian geopropolis. Microb. Pathogenesis 139: 103855 (2020) 

  7. Dewey-Mattia D, Manikonda K, Hall AJ, Wise ME, Crowe SJ. Surveillance for foodborne disease outbreaks-United States, 2009-2015. MMWR Surveill. Summ. 67: 1-11 (2018) 

  8. Di Ciccio P, Vergara A, Festino AR, Paludi D, Zanardi E, Ghidini S, Ianieri A. Biofilm formation by Staphylococcus aureus on food contact surfaces: Relationship with temperature and cell surface hydrophobicity. Food Control 50: 930-936 (2015) 

  9. Dotto C, Lombarte Serrat A, Ledesma M, Vay C, Ehling-Schulz M, Sordelli DO, Grunert T, Buzzola F. Salicylic acid stabilizes Staphylococcus aureus biofilm by impairing the agr quorum-sensing system. Sci. Rep.-UK 11: 1-14 (2021) 

  10. Fetsch A, Johler S. Staphylococcus aureus as a foodborne pathogen. Curr. Clin. Microbiol. Rep. 5: 88-96 (2018) 

  11. Gad GFM, El-Feky MA, El-Rehewy MS, Hassan MA, Abolella H, Abd El-Baky RM. Detection of icaA, icaD genes and biofilm production by Staphylococcus aureus and Staphylococcus epidermidis isolated from urinary tract catheterized patients. J. Infect. Dev. Ctries. 3: 342-351 (2009) 

  12. Gotz F. Staphylococcus and biofilms. Mol. Microbiol. 43: 1367-1378 (2002) 

  13. Greger H. Structural classification and biological activities of Stemona alkaloids. Phytochem. Rev. 18: 463-493 (2019) 

  14. Gurunathan S, Han JW, Dayem AA, Eppakayala V, Kim JH. Oxidative stress-mediated antibacterial activity of graphene oxide and reduced graphene oxide in Pseudomonas aeruginosa. Int. J. Nanomed. 7: 5901-5914 (2012) 

  15. Hung DT, Shakhnovich EA, Pierson E, Mekalanos JJ. Small-molecule inhibitor of Vibrio cholerae virulence and intestinal colonization. Science 310: 670-674 (2005) 

  16. Jain A, Parihar D. Antibacterial, biofilm dispersal and antibiofilm potential of alkaloids and flavonoids of Curcuma. Biocatal. Agric. Biotechnol. 16: 677-682 (2018) 

  17. Jang JE, Kil YS, Park RH, Oh S, Kim HK, Jeong MG, Seo EK, Hwang ES. Suppression of IL-2 production and proliferation of CD4+ T cells by tuberostemonine O. Chem. Biodivers. 11: 1954-1962 (2014) 

  18. Jeber ZK, Tawfeek FK. Effect of turmeric oil on reproductive efficiency of adult male rats exposed to potassium dichromate. J. Environ. Sci. Toxicol. Food Technol. 3: 52-58 (2013) 

  19. Jeon DY, Yum SJ, Seo DW, Kim SM, Jeong HG. Leaf-associated microbiota on perilla (Perilla frutescens var. frutescens) cultivated in South Korea to detect the potential risk of food poisoning. Food Res. Int. 126: 108664-108674 (2019) 

  20. Jiang Q, Jin Z, Sun B. MgrA negatively regulates biofilm formation and detachment by repressing the expression of psm operons in Staphylococcus aureus. Appl. Environ. Microb. 84: e01008-01018 (2018) 

  21. Jung KH, Kil YS, Jung J, Park S, Shin D, Lee K, Seo EK, Bae H. Tuberostemonine N, an active compound isolated from Stemona tuberosa, suppresses cigarette smoke-induced sub-acute lung inflammation in mice. Phytomedicine 23: 79-86 (2016) 

  22. Kim YJ, Yu HH, Park YJ, Lee NK, Paik HD. Anti-biofilm activity of cell-free supernatant of Saccharomyces cerevisiae against Staphylococcus aureus. J. Microbiol. Biotechnol. 30: 1854-1861 (2020) 

  23. Lee JH, Kim YG, Lee K, Kim SC, Lee J. Temperature-dependent control of Staphylococcus aureus biofilms and virulence by thermoresponsive oligo (N-vinylcaprolactam). Biotechnol. Bioeng. 112: 716-724 (2015) 

  24. Lee JH, Kim YG, Ryu SY, Lee J. Calcium-chelating alizarin and other anthraquinones inhibit biofilm formation and the hemolytic activity of Staphylococcus aureus. Sci. Rep. 6: 1-11 (2016) 

  25. Lee JY, Wang HJ, Shin DB, Cho YS. Antibiotic resistance and bacterial biofilm formation by Staphylococcus aureus strains isolated from various foods. Microbiol. Biotechnol. Lett. 41: 96-104 (2013) 

  26. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2 -ΔΔCT method. Methods 25: 402-408 (2001) 

  27. Meireles A, Borges A, Giaouris E, Simoes M. The current knowledge on the application of anti-biofilm enzymes in the food industry. Food Res. Int. 86: 140-146 (2016) 

  28. Meng Y, Hou X, Lei J, Chen M, Cong S, Zhang Y, Ding W, Li G, Li X. Multi-functional liposomes enhancing target and antibacterial immunity for antimicrobial and anti-biofilm against methicillin-resistant Staphylococcus aureus. Pharmaceut. Res. 33: 763-775 (2016) 

  29. Mizar P, Arya R, Kim T, Cha S, Ryu KS, Yeo WS, Lee SS. Total synthesis of Xanthoangelol B and its various fragments: toward inhibition of virulence factor production of Staphylococcus aureus. J. Med. Chem. 61: 10473-10487 (2018) 

  30. Nait Chabane Y, Mlouka MB, Alexandre S, Nicol M, Marti S, Pestel- Caron M, De E. Virstatin inhibits biofilm formation and motility of Acinetobacter baumannii. BMC Microbiol. 14: 1-7 (2014) 

  31. Newell DG, Koopmans M, Verhoef L, Duizer E, Aidara-Kane A, Sprong H, Opsteegh M, Langelaar M, Threfall J, Scheutz F. Food-borne diseases-the challenges of 20 years ago still persist while new ones continue to emerge. Int. J. Food Microbiol. 139: 3-15 (2010) 

  32. Nguyen PT, Nguyen MT, Bolhuis A. Inhibition of biofilm formation by alpha-mangostin loaded nanoparticles against Staphylococcus aureus. Saudi. J. Biol. Sci. 28: 1615-1621 (2021) 

  33. Pisoschi AM, Pop A, Georgescu C, Turcus V, Olah NK, Mathe E. An overview of natural antimicrobials role in food. Eur. J. Med. Chem. 143: 922-935 (2018) 

  34. Rodriguez-Martinez JM, Pascual A. Antimicrobial resistance in bacterial biofilms. Rev. Med. Microbiol. 17: 65-75 (2006) 

  35. Ross AS, Saulnier G, Newell J, Isaacson D. Current source design for electrical impedance tomography. Physiol. Meas. 24: 509 (2003) 

  36. Rudrappa T, Bais HP. Curcumin, a known phenolic from Curcuma longa, attenuates the virulence of Pseudomonas aeruginosa PAO1 in whole plant and animal pathogenicity models. J. Agric. Food Chem. 56: 1955-1962 (2008) 

  37. Shrestha L, Kayama S, Sasaki M, Kato F, Hisatsune J, Tsuruda K, Koizumi K, Tatsukawa N, Yu L, Takeda K. Inhibitory effects of antibiofilm compound 1 against Staphylococcus aureus biofilms. Med. Microbiol. Immunol. 60: 148-159 (2016) 

  38. Tan L, Li SR, Jiang B, Hu XM, Li S. Therapeutic targeting of the Staphylococcus aureus accessory gene regulator (agr) system. Front. Microbiol. 9: 55 (2018) 

  39. Van Hung P, Morita N. Physicochemical properties and enzymatic digestibility of starch from edible canna (Canna edulis) grown in Vietnam. Carbohyd. Polym. 61: 314-321 (2005) 

  40. Vu B, Chen M, Crawford RJ, Ivanova EP. Bacterial extracellular polysaccharides involved in biofilm formation. Molecules 14: 2535-2554 (2009) 

  41. Yum SJ, Kim SM, Yu YC, Jeong HG. Inhibition of growth and biofilm formation of Staphylococcus aureus by corosolic acid. Korean J. Food Sci. Technol. 49: 146-150 (2017) 

  42. Yu YC, Yum SJ, Jeon DY, Jeong HG. Analysis of the microbiota on lettuce (Lactuca sativa L.) cultivated in South Korea to identify foodborne pathogens. J. Microbiol. Biotechn. 28: 1318-1331 (2018) 

  43. Yu D, Zhao L, Xue T, Sun B. Staphylococcus aureus autoinducer-2 quorum sensing decreases biofilm formation in an icaR-dependent manner. BMC Microbiol. 12: 1-12 (2012) 

  44. Zhang Y, Gao T, Kang S, Sillanpaa M. Importance of atmospheric transport for microplastics deposited in remote areas. Environ. Pollut. 254: 112953-112957 (2019) 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로