$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

고분자전해질 연료전지의 전극 열화 과정에서 고분자막에 석출된 백금에 관한 연구
Study on the Platinum Deposition in Membrane of Polymer Electrolyte Membrane Fuel Cell during Electrode Degradation Process 원문보기

Korean chemical engineering research = 화학공학, v.60 no.2, 2022년, pp.202 - 207  

오소형 (순천대학교 화학공학과) ,  권혜진 (순천대학교 화학공학과) ,  유동근 (순천대학교 화학공학과) ,  박권필 (순천대학교 화학공학과)

초록
AI-Helper 아이콘AI-Helper

고분자 전해질 연료전지(PEMFC)의 전극 열화에 대한 연구는 전극상에서 Pt의 입자 성장 및 활성면적 감소에 대한 연구가 대부분이다. 고분자막과 접해 있는 전극촉매 Pt의 열화는 고분자막 열화에 영향을 주는데, 이와 관련된 연구는 많지 않다. 본 연구에서는 전극촉매 열화 가속 시험 과정에서 열화된 Pt가 고분자막 내부에 석출되는 현상과 그 영향에 대해서 연구하였다. 백금 열화 속도를 가속화시키기 위해 전압 변화(0.6 V ↔ 0.9 V)를 30,000 사이클까지 반복했다. Cathode에 산소를 유입하면서 전압 변화 사이클을 반복했을 때 질소를 유입했을 때 보다 막 내부에 석출된 Pt의 양이 더 많았다. 전압 변화 사이클 횟수가 증가할수록 막 내부에 석출된 Pt의 양이 증가하였고, cathode에서 용해된 Pt가 anode 쪽으로 이동해 20,000 사이클에서는 막 내부에 전체적으로 균일한 분포를 보였다. 이와 같은 전극촉매 열화 가속 시험과정에서 고분자막의 수소투과 전류밀도는 거의 변하지 않아서, 석출된 Pt가 고분자막의 내구성에는 영향을 주지 않음을 확인하였다.

Abstract AI-Helper 아이콘AI-Helper

The study on electrode degradation of Proton Exchange Membrane Fuel Cell (PEMFC) was mainly studied on the particle growth and active area reduction of Pt on the electrode. The degradation of the electrode catalyst Pt in contact with the membrane affects the deterioration of the polymer membrane, bu...

주제어

표/그림 (7)

참고문헌 (20)

  1. Wang, G., Yu, Y., Liu, H., Gong, C., Wen, S., Wang, X. and Tu, Z., "Progress on Design and Development of Polymer Electrolyte Membrane Fuel Cell Systems for Vehicle Applications: A Review," Fuel Processing Technology, 179, 203-228(2018). 

  2. Department of Energy, https://www.energy.gov (2016). 

  3. New Energy and Industrial Technology Development Organization, http://wwwnedo.go.jp/english/index.html (2016). 

  4. Hydrogen and Fuel Cell Technology Platform in the European Union, www.HFPeurope.org (2016). 

  5. Ministry of Science and Technology of the People's Republic of China, http://en.most.gov.cn/eng/index.htm (2016). 

  6. Wilkinson, D. P. and St-Pierre, J., in: W. Vielstich, H. A. Gasteiger, A. Lamm (Eds.). Handbook of Fuel Cell: Fundamentals Technology and Applications, Vol. 3, John Wiley & Sons Ltd., Chichester, England, 611-612(2003). 

  7. Wilson, M. S., Garzon, F. H., Sickafus, K. E. and Gottesfeld, S., "Surface Area Loss of Supported Platinum in Polymer Electrolyte Fuel Cells," J. Electrochem. Soc., 140(10), 2872-2877(1993). 

  8. Knights, S. D., Colbow, K. M., St-Pierre, J. and Wilkinson, D. P., "Aging Mechanism and lifetime of PEFC and DMFC," J. Power Sources, 127(1-2), 127-134(2004). 

  9. Luo, Z., Li, D., Tang, H., Pan, M. and Ruan, R., "Degradation Behavior of Membrane-electrode-assembly Materials in 10-cell PEMFC Stack," Int. J. Hydrogen Energy, 31(13), 1831-1837(2006). 

  10. Pozio, A., Silva R. F., Francesco, M. D. and Giorgi, L., "Nafion Degradation in PEFCs from End Plate Iron Contamination," Electrochim. Acta, 48(11), 1543-1549(2003). 

  11. Xie, J., Wood III, D. L., Wayne, D. N., Zawodinski, T. A., Atanassov, P. and Borup, R. L., "Durability of PEFCs at High Humidity Conditions," J. Electrochem. Soc., 152(1), A104-A113(2005). 

  12. Curtin, D. E., Lousenberg, R. D., Henry, T, J., Tangeman, P. C. and Tisack, M. E., "Advanced Materials of Improved PEMFC Performance And Life," J. Power Sources, 131(1-2), 41-48(2004). 

  13. Watanabe, M., Tsurumi, K., Mizukami,T., Nakamura, T. and Stonehart, P., "Activity and Stability of Ordered and Disordered Co-Pt Alloys for Phosphoric Acid Fuel Cells," J. Electrochem. Soc., 141(10), 2659-2668(1994). 

  14. Akita, T., Taniguchi, A., Maekawa, J., Siroma, Z., Tanaka, K., Kohyama, M. and Yasuda, K., "Analytical TEM Study of Pt Particle Deposition in the Proton-exchange Membrane of a Membraneelectrode-Assembly," J. Power Sources, 159(1), 461-467(2006). 

  15. Zhai, Y., Zhang, H., Xing, D. and Shao, Z., "The Stability of Pt/C Catalyst in H3PO4/PBI PEMFC During High Temperature Life Test," J. Power Sources, 164(1), 126-133(2006). 

  16. U.S. Department of Energy and U.S. DRIVE Fuel Cell Technical Team, "Protocols for Testing PEM Fuel Cells and Fuel Cell Components," Multi-Year Research, Development and Demonstration Plan, 2016 Fuel Cell Section. 

  17. Daido University, Ritsumeikian Univ., Tokyo Institute of Technology, Japan Automobile Research Ins., "Cell Evaluation and Analysis Protocol Guidline," NEDO, Development of PEFC Technologies for Commercial Promotion-PEFC Evaluation Project, January 30 (2014). 

  18. Song, J. H, Jeong, J. J., Jeong, J. H., Kim, S. H., Ahn, B. K., Ko, J. J. and Park, K. P., "Effect of Membrane Degradation on the Electrode Degradation in PEMFC," Korean Chem. Eng. Res., 51(3), 325-329(2013). 

  19. Song, J. H, Kim, S. H., Ahn, B. K., Ko, J. J. and Park, K. P., "Effect of Electrode Degradation on the Membrane Degradation in PEMFC," Korean Chem. Eng. Res., 51(1), 68-72(2013). 

  20. Marianne P. Rodgers, Leonard J. Bonville, H. Russell Kunz, Darlene K. Slattery, and James M. Fenton, "Fuel Cell Perfluorinated Sulfonic Acid Membrane Degradation Correlating Accelerated Stress Testing and Lifetime," Chemical Reviews, 112(11), 6075-6103(2012). 

저자의 다른 논문 :

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로