최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기한국측량학회지 = Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, v.40 no.2, 2022년, pp.91 - 108
이대건 (AI Studio Lab, INFINIQ.) , 신영하 (Dept. of Geoinformation Engineering, Sejong University) , 이동천 (Dept. of Environment, Energy & Geoinformatics, Sejong University)
In most cases, optical images have been used as training data of DL (Deep Learning) models for object detection, recognition, identification, classification, semantic segmentation, and instance segmentation. However, properties of 3D objects in the real-world could not be fully explored with 2D imag...
Audebert, N., Le Saux, B., and Lefevre, S. (2018), Beyond RGB: very high resolution urban remote sensing with multimodal deep networks, ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 140, pp. 20-32.
Badrinarayanan, V., Kendall, A., and Cipolla, R. (2017), SegNet: A deep convolutional encoder-decoder architecture for image segmentation, IEEE Transactions On Pattern Analysis and Machine Intelligence, Vol. 39, No. 12, pp. 2481-2495.
Ballard, D. and Brown, C. (1982), Computer Vision, Prentice-Hall, Inc., Englewood Cliffs, NJ, 523p.
Bronshtein, A. (2017), Train/test split and cross validation in Python, https://towardsdatascience.com/train-test-split-andcross-validation-in-python-80b61beca4b6 (last date accessed: 30 August 2020).
Chen, K., Weinmann, M., Gao1, X., Yan, M., Hinz, S., Jutzi, B., and Weinmann, M. (2018), Residual shuffling convolutional neural networks for deep semantic image segmentation using multi-modal data, ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 4-7 June, Riva del Garda, Italy, pp. 65-72.
Cheng, W., Yang, W., Wang, M., Wang, G., and Chen, J. (2019), Context aggregation network for semantic labeling in aerial images, Remote Sensing, Vol. 11, No. 10, pp. 1-19.
Cho, E. and Lee, D.C. (2020), Building detection by convolutional neural network with infrared image, LiDAR data and characteristic information fusion, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Vol. 38, No. 6, pp. 635-644. (in Korean with English abstract)
Cramer, M. (2010), The DGPF test on digital aerial camera evaluation: Overview and test design. Photogrammetrie, Fernerkundung, Geoinformation, Vol. 2, pp. 73-82.
Goodfellow, I., Bengio, Y., and Courville, A. (2016), Deep Learning, The MIT Press, Cambridge, MA, 775p.
Horn, B.K. (1981), Hill shading and the reflectance map, Proceedings of the IEEE, Vol. 69, No. 1, pp. 14-47.
Kim, J. and Bathe, K. (2013), The finite element method enriched by interpolation covers, Computers and Structures, Vol. 116, pp. 35-49.
Krizhevsky, A., Sutskever, I., and Hinton, G. (2017), ImageNet classification with deep convolutional neural networks, Communications of the ACM, Vol. 60, No. 6, pp. 84-90.
Laurini, R. and Thompson, D. (1998), Fundamentals of Spatial Information Systems, Academic Press, London, 680p.
Lee, D., Cho, E., and Lee, D.C. (2019), Semantic classification of DSM using convolutional neural network based deep learning, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, 2-3 July, Korea, pp. 93-96. (in Korean with English abstract)
Lee, D., Shin, Y., and Lee, D.C. (2020), Land cover classification using SegNet with slope, aspect and multi-directional shaded relief images derived from digital surface model, Journal of Sensors, Vol. 2020, pp. 1-19.
Lee, D.C., Lee, D.H., and Lee, D. (2019), Determination of building model key points using multidirectional shaded relief images generated from airborne LiDAR data, Journal of Sensors, Vol. 2019, pp. 1-19.
Lemaire, C. (2008), Aspects of the DSM production with high resolution images, International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. 37, Part B4, pp. 1143-1146.
Lillesand, T., Kiefer, R., and Chipman, J. (2004), Remote Sensing and Image Interpretation - 5th edition, John Wiley & Sons, New York, NY, 763p.
Liu, C., Zoph, B., Neumann, M., Shlens, J., Hua, W., Li, L., F. Li, Yuille1, A., Huang, J., and Murphy, K. (2018), Progressive neural architecture search, Computer Vision - ECCV 2018, pp. 19-35.
Macko, V., Weill, C., Mazzawi, H., and Gonzalvo, J. (2019), Improving neural architecture search image classifiers via ensemble learning, arXiv:1903.06236v1.
Maltezos, E., Doulamis, A, Doulamis, N., and Ioannidis, C. (2019), Building extraction from LiDAR data applying deep convolutional neural networks, IEEE Geoscience and Remote Sensing Letters, Vol. 16, No. 1, pp. 155-159.
Maune, D., Kopp, S., Crawford, C., and Zervas, C. (2007), Digital Elevation Model Technologies and Applications: The DEM Users Manual - 2nd edition, American Society for Photogrammetry and Remote Sensing, Bethesada, MD, 655p.
McCulloch, W. and Pitts, W. (1943), A logical calculus of the ideas immanent in nervous activity, Bulletin of Mathematical Biophysics, Vol. 7, pp. 115-133.
Meyer, F. and Beucher, S. (1990), Morphological segmentation, Journal of Visual Communication and Image Representation, Vol. 1, No. 1, pp. 21-46.
Nahhas, F., Shafri, H., Sameen, M, Pradhan, B., and Mansor, S. (2018), Deep learning approach for building detection using LiDAR - orthophoto fusion, Journal of Sensors, Vol. 2020, No. 7, pp. 1-12.
Pibre, L., Chaumont, M., Subsol, G., Ienco, D., and Derras, M. (2017), How to deal with multi-source data for tree detection based on deep learning, IEEE Global Conference on Signal and Information Processing, pp. 1150-1154.
Prados, E. and Faugeras, O. (2006), Shape from Shading, In: Paragios, N., Chen, Y., and Faugeras, O. (eds.), Handbook of Mathematical Models in Computer Vision, Springer, New York, N.Y., pp. 375-403.
Rottensteiner, F., Sohn, G., Gerke, M., and Wegner, J. (2013), ISPRS test project on urban classification and 3D building reconstruction, ISPRS, http://www2.isprs.org/tl_files/isprs/wg34/docs/ComplexScenes_revision_v4.pdf (last date accessed: 30 July 2020).
Rusu, A., Rabinowitz, N., Desjardins, G., Soyer, H., Kirkpatrick, J., Kavukcuoglu, K., Pascanu, R., and Hadsel, R. (2016), Progressive neural networks, arXiv:1606.04671v3.
Sander, R. (2020), Data Fusion and Class Imbalance Correction Techniques for Efficient Multi-Class Point Cloud Semantic Segmentation. https://www.researchgate.net/publication/339323048_Sparse_Data_Fusion_and_Class_Imbalance_Correction_Techniques_for_Efficient_Multi-Class_Point_Cloud_Semantic_Segmentation (last date accessed: 25 January 2022).
Sharada, P., Mohanty, S., Hughes, D., and Salathe, M. (2016), Using deep learning for image-based plant disease detection, Frontiers in Plant Science, doi: 10.3389/fpls.2016.01419, pp. 1-10.
Shin, Y.H., Son, K.W., and Lee, D.C. (2022), Semantic segmentation and building extraction from airborne LiDAR data with multiple return using PointNet++, Applied Sciences, Vol. 12, No. 4, pp. 1-20.
Simonyan, K. and Zisserman, A. (2015), Very deep convolutional networks for large-scale image recognition, International Conference on Learning Representations, 7-9 May, San Diego, CA, USA, arXiv:1409.1556v6.
Speldekamp, T., Fries, C., Gevaert, C., and Gerke, M. (2015), Automatic semantic labelling of urban areas using a rulebased approach and realized with MeVisLab, https://www.researchgate.net/publication/275639040_Automatic_Semantic_Labelling_of_Urban_Areas_using_a_rule-based_approach_and_realized_with_MeVisLab (last date accessed: 13 August 2020).
Szeliski, R. (2011), Computer Vision: Algorithms and Applications, Springer-Verlag, London, U.K., 812p.
Tao, S. (2019), Deep neural network ensembles, arXiv:1904.05488v2.
Varney, N., Asari, V.K., and Graehling, Q. (2020), DALES: A large-scale aerial LiDAR data set for semantic segmentation, Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Seattle, WA, USA, 14 April 2020.
Wang, X. and Wang, X. (2020), Spatiotemporal fusion of remote sensing image based on deep learning, Journal of Sensors, Vol. 2020, Article ID 8873079, pp. 1-11.
Zhou, K., Ming, D., Lv, X., Fang, J., and Wang, M. (2019), CNN-based land cover classification combining stratified segmentation and fusion of point cloud and very high-spatial resolution remote sensing image data, Remote Sensing, Vol. 2019, No. 11, pp. 1-28.
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
오픈액세스 학술지에 출판된 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.