$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

NBR과 MaxEnt 모델 분석을 활용한 희귀특산식물(개느삼) 분포 및 피해량 예측 - 양구 비봉산 산불피해지를 대상으로-
Prediction of Potential Habitat and Damage Amount of Rare·Endemic Plants (Sophora Koreensis Nakai) Using NBR and MaxEnt Model Analysis - For the Forest Fire Area of Bibongsan (Mt.) in Yanggu - 원문보기

韓國資源植物學會誌 = Korean journal of plant resources, v.35 no.2, 2022년, pp.169 - 182  

윤호근 (국립DMZ자생식물원) ,  이종원 (국립DMZ자생식물원) ,  안종빈 (국립DMZ자생식물원) ,  유승봉 (화랑조경) ,  박기쁨 (국립생태원) ,  신현탁 (국립수목원) ,  박완근 (강원대학교 산림자원학과) ,  김상준 (국립DMZ자생식물원)

초록
AI-Helper 아이콘AI-Helper

본 연구는 산불피해가 발생한 접경지역 산림 내 희귀특산식물(개느삼) 분포를 예측하고 피해를 정량화하고자 수행되었다. 이를 위해 산불피해강도에 따른 산림면적 피해(NBR), 임상도를 통한 수종별 피해(Vegetation map), MaxEnt 모델 분석을 수행, 보다 정밀한 결과를 도출하고자 하였다. 우선, 산불피해강도 분석은 위성영상(Landsat-8)을 활용하여, 산불피해강도(ΔNBR2016-2015)를 분석하고 피해범위를 도출하였다. 임상도 작성은 환경부의 토지피복도, 산림청의 임상도, 자체적으로 식생조사를 진행하여, 산불 전·후의 임상도를 작성하고, 수종 피해 및 변화를 확인하였다. 마지막으로 MaxEnt 모델 분석은 관련문헌과 자체조사 자료를 기준으로 작성된 개느삼 실제서식지 좌표를 활용하여, AUC(Area Under Curve) 값을 도출하였다. 분석된 결과의 정밀도를 높이고자, 임상도와 결합하여, 개느삼이 주로 분포하는 소나무 군락 및 소나무-참나무림 군락을 대상으로 재분석한 결과, 대상지 내 개느삼 실제출현 좌표 325개소 중 299개 지점에서 개느삼 출현가능성이 92.0%로 예측되어 유의미한 결과를 얻을 수 있었다. 해당 자료를 산불피해강도(ΔNBR2016-2015) 자료와 중첩한 결과, 산불피해지 내 개느삼 서식가능지(예측) 면적 44,760 m2의 45.9%인 20,552 m2가 훼손된 것을 확인할 수 있었다. 따라서 본 연구는 산불로 인해 훼손된 희귀식물 서식지 면적을 정량화하고 희귀식물 보전·관리를 위한 사례가 될 것으로 기대된다.

Abstract AI-Helper 아이콘AI-Helper

This study was conducted to predict the distribution of rare·endemic plants (Sophora koreensis Nakai) in the border forests where wildfire damage occurred and to quantify the damage. For this purpose, we tried to derive more accurate results through forest area damage (NBR) according to the B...

주제어

표/그림 (18)

참고문헌 (31)

  1. An, J.B. 2019. Conservation strategies and vegetation characteristics of Echinosophora koreensis of Korean endemic plants. Department of Forest Resources, Ph. D. Thesis, Gangwon Nat'l Univ., Korea. pp. 1-149 (in Korean). 

  2. Cocke, A.E., P.Z. Fule and J.E. Crouse. 2005. Comparison of burn severity assessments using differenced normalized burn ratio and ground data. Int. J. Wildland Fire 14(2):189-198. 

  3. Elith, J., S.J. Phillips, T. Hastie, M. Dudik, Y.E. Chee and C.J. Yates. 2011. A statistical explanation of MaxEnt for ecologist. Diversity and Distributions 17(1):43-57. 

  4. Granstrom, A. 2001. Fire management for biodiversity in the European boreal forest. Scand J For Res. 16(1):62-69. 

  5. Key, C.H. and N.C. Benson. 2002. Measuring and remote sensing of burn severity. US Geological Survey Wildland Fire Workshop, Los Almos, NM (USA), p. 2. 

  6. Key, C.H. and N.C. Benson. 2005. Landscape assessment: Ground measure of severity the composite burn index, Firemon: Fire effects monitoring and inventory system. General Technical Report. Oregan (USA). p. 51. 

  7. Korea Forest Research Institute. 2000. East coast forest fire area detailed survey report for restoration of healthy natural ecosystem and establishment of permanent forest restoration plan. Korea Forest Research Institute, Seoul, Korea. pp. 1-311 (in Korean). 

  8. Korea Forest Service. 2021a. 2020 Forest basic statistics. Korea Forest Service, Sejong, Korea. pp. 1-371 (in Korean) 

  9. Korea Forest Service. 2021b. Forest common sense. (accessed on 10 June 2021). https://www.forest.go.kr/kfsweb/kfi/kfs/cms/cmsView.do?mnNKFS_03_06_01_01&cmsIdFC_001569. 

  10. Korea Forest Service. 2021c. Forest forestry statistics platform: Status of wildfire damage. (accessed on 15 april 2021). https://kfss.forest.go.kr/stat/ptl/stat/statDtl.do?curMenu3194&statSeq5215. 

  11. Korea Forest Service. 2021d. Forest geo-spatial information service. (accessed on 2 april 2021). https://map.forest.go.kr/forest/. 

  12. Kreisel, K.J. and S.J. Stein. 1999. Bird use of burned and unburned coniferous forest during winter. Wilson Bulletin. 111:243-250. 

  13. Lee, G.S. and S.D. Park. 2004. Development of vegetation structure after forest fire in the east coastal region Korea. J. Eco. Env. 27(2):99-106 (in Korean). 

  14. Lopez-Garcia, M. and V. Caselles. 1991. Mapping burns and natural reforestation using thematic mapper data. Geocarto Int. 6:31-37. 

  15. Ma, H.S. and W.O. Jeong. 2008. Long-term change of the amount of soil erosion in forest fire damaged area. J. Korean Soc. For. Sci. 97(4):363-367 (in Korean). 

  16. Marques, M.A. and E. Mora. 1998. Effects on erosion of two postfire management practices: clear-cutting versus non-intervention. Soil Tillage Res. 45(3):433-439. 

  17. Ministry of Environment. 2021. Environmental geospatial information service. (accessed on 4 april 2021). https://egis.me.go.kr/main.do. 

  18. National Institute for Disaster Prevention. 2003. Observation and counseling measures for rainwater and soil runoff in mountainous areas. National Institute for Disaster Prevention, Seoul, Korea. pp. 1-173 (in Korean). 

  19. National Institute of Environmental Research. 2017. 2016 DMZ ecosystem survey: eastern mountain region north of civil control Line. National Institute of Environmental Research. Incheon, Korea. pp. 1-545 (in Korean). 

  20. Phillips, S.J., R.P. Anderson and R.E. Schapire. 2006. Maximum entropy modeling of species geographic distributions. Ecol. Modell. 190(3):231-259. 

  21. Phillips, S.J., R.P. Anderson, M. Dudik, R.E. Schapire and M.E. Blair. 2017. Opening the black box: An open-source release of maxent. Ecography 40:887-893. 

  22. Roy, D.P., L. Boschetti and S.N. Trigg. 2006. Remote sensing of fire severity: assessing the performance of the normalized burn ratio. IEEE Geosci Remote Sens Lett. 3(1):112-116. 

  23. Seo, C.W., Y.R. Park and Y.S. Choi. 2008. Comparison of species distribution models according to location data. J. Korean Soc. GIS. 16(4):59-64 (in Korean). 

  24. Sung, C.Y., H.T. Shin, S.H. Choi and H.S. Song. 2018. Predicting potential habitat for Hanabusaya asiatica in the north and south Korean border region using maxent. Korean J. Environ. Ecol. 32(5):469-477 (in Korean). 

  25. United States Department of Agriculture. 2021. Remote sensing applications center. (accessed on 1 March 2021). http://fsweb.rsac.fs.fed.us. 

  26. United States Geological Survey. 2021. USGS earth explorer. (accessed on 10 April 2021). https://earthexplorer.usgs.gov/ 

  27. van Wagtendonk, J.W., R.R. Root and C.H. Key. 2004. Comparison of AVIRIS and landsat ETM+ detection capabilities for burn severity. Remote Sens. Environ. 92(3):397-408. 

  28. Won, M.S., K.S. Koo and M.B. Lee. 2007. An quantitative analysis of severity classification and burn severity for the large forest fire areas using normalized burn ratio of landsat imagery. Journal of the KAGIS 10(3):80-92 (in Korean). 

  29. Won, M.S., K.S. Koo, M.B. Lee and Y.M. Son. 2008. Estimation of non-CO 2 greenhouse gases emissions from biomass burning in the Samcheok large-fire area using landsat TM imagery. Korean J. AFM. 10(1):1-24 (in Korean). 

  30. You, J.H and S.Y. Kwon. 2019. Analysis on vegetation change of forest fire damaged area in Sogeumgang district, Gyeongju national park. J. Korean Env. Res. Tech 22(4):47-64 (in Korean). 

  31. Yun, H.G., A.Y. Lee, J.B. An, T.Y. Hwang and J.W. Lee. 2021. A study on the vascular flora and its management plan at the forest genetic resource reserve of Mt. Munsu (Gimpo). Korean J. Plant Res. 34(4):311-338 (in Korean). 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로