$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 선박 추진시스템 유동 소음원 상대적 기여도 분석
Investigation on relative contribution of flow noise sources of ship propulsion system 원문보기

한국음향학회지= The journal of the acoustical society of Korea, v.41 no.3, 2022년, pp.268 - 277  

하준범 (부산대학교 기계공학부) ,  구가람 (부산대학교 기계공학부) ,  정철웅 (부산대학교 기계공학부) ,  설한신 (한국해양과학기술원부설 선박해양플랜트연구소) ,  정홍석 (한국해양과학기술원부설 선박해양플랜트연구소) ,  정민석 (한국해양과학기술원부설 선박해양플랜트연구소)

초록
AI-Helper 아이콘AI-Helper

본 논문에서는 KVLCC2 선체 축소모형에 설치된 추진시스템의 세부 구성품별 유동 소음원을 분석하였으며, 각각의 소음원이 수중방사소음에 미치는 영향에 대해 정량적으로 분석하였다. 수치 해석 영역은 실험 결과와의 비교를 위하여 선박해양플랜트연구소 대형 캐비테이션 터널의 시험부와 동일하게 설정하였다. 먼저 유동장내 소음원을 정확하게 모사하기 위하여 고정밀 해석기법인 비압축성 다상 Delayed Detached Eddy Simulation 방법을 적용하였고, 유동해석 결과를 기반으로 Ffowcs Williams and Hawkings 적분방정식을 사용하여 수중방사소음을 예측하였으며, 터널 실험결과와의 비교를 통해 해석절차의 유효성을 확인하였다. 추진시스템의 유동 소음원별 영향을 정량적으로 비교하기 위하여 추진기 날개 끝-와류 공동, 날개 표면 그리고 방향타 표면을 소음원 영역으로 선정하였으며, 음압과 파워 스펙트럼 밀도, 음향 파워를 비교하였다. 공동에 의한 홀극 소음원의 기여도가 추진기 날개 및 방향타에 의한 쌍극 소음원에 비해 수중방사소음에 크게 기여하였으며, 추진기 후류의 영향으로 방향타에 의한 기여도가 추진기 보다 더 크게 발생함을 확인하였다.

Abstract AI-Helper 아이콘AI-Helper

In this study, each component of flow noise source of underwater propeller installed to the scale model of the KVLCC2 is investigated and the effect of each noise source on underwater-radiated noise is quantitatively analyzed. The computation domain is set to be the same as the test section of the l...

Keyword

표/그림 (16)

참고문헌 (31)

  1. A. J. Fuentes, M. Suchy, and P. B. Palomo, "The greatest challenge for URN reduction in the oceans by means of engineering," Proc. OCEANS 2019 MTS/ IEEE SEATTLE. IEEE, 1-8 (2019). 

  2. R. Williams, A. J. Wright, E. Ashe, L. K. Blight, R. Bruintjes, R. Canessa, and M. A. Wale, "Impacts of anthropogenic noise on marine life: Publication patterns, new discoveries, and future directions in research and management," Ocean and Coastal Management, 115, 17-24 (2015). 

  3. A. D. Hawkins and A. N. Popper, "A sound approach to assessing the impact of underwater noise on marine fishes and invertebrates," ICES J. of Marine Sci. 74, 635-651 (2017). 

  4. C. Erbe, R. Dunlop, and S. Dolman, "Effects of noise on marine mammals," in Handbook of Effects of Anthropogenic Noise on Animals, edited by H. Slabbekoorn, R. J. Dooling, A. N. Popper, R. R. Fay (Springer, New York, 2018). 

  5. IMO. M, Guidelines for the reduction of underwater noise from commercial shipping to address adverse impacts on marine life, MEPC, 2014. 

  6. J. Ahn, G. Kim, K. Kim, Y. Park, H. Ahn, Y. Jung, and J. Yoon, "Performance improvement study of propeller propulsion efficiency and cavitation for the 8800TEU class container" (in Korean), J. Soc. Nav. Arch. Kr. 54, 453-460 (2017). 

  7. C. Park, G. Kim, G. Yim, Y. Park, and I. Moon, "A validation study of the model test method for propeller cavitation noise prediction," Ocean Eng. 213, 107655 (2020). 

  8. H. Seol, C. Park, and K. Kim, "Numerical prediction of marine propeller BPF noise using FW-H equation and its experimental validation" (in Korean), Trans. Kr. Soc. Noise Vib. Eng. 26, 705-713 (2016). 

  9. I. Park, K. Kim, J. Kim, H. Seol, Y. Park, and J. Ahn, "Numerical study on propeller cavitation and pressure fluctuation of model and full scale ship for a MR tanker" (in Korean), J. Soc. Nav. Arch. Kr. 57, 35-44 (2020). 

  10. G. Ku, C. Cheong, I. Park, and H. Seol, "Numerical investigation of tip vortex cavitation inception and noise of underwater propellers of submarine using sequential eulerian-lagrangian approaches," Appl. Sci. 8721 (2020). 

  11. J. Cho, G. Ku, C. Cheong, and H. Seol, "Numerical investigation of cavitation noise of the submarine propellers using DDES technique and quadrupole corrected FW-H equation," Proc. INTER-NOISE and NOISE-CON Cong. and Conf. 4376-4381 (2020). 

  12. G. Ku, S. Ryu, and C. Cheong, "Numerical investigation into cavitation flow noise of hydrofoil using quadrupole- corrected Ffowcs Williams and Hawkings equation" (in Korean), J. Acoust. Soc. Kr. 37, 263-270 (2018). 

  13. G. Ku, J. Cho, C.Cheong and H. Seol, "Numerical investigation of tip-vortex cavitation noise of submarine propellers using hybrid computational hydro-acoustic approach," Ocean Eng. 238, 109693 (2021). 

  14. J. Ha, G. Ku, J. Cho, C. Cheong, and H. Seol, "Numerical comparative investigation on blade tip vortex cavitation and cavitation noise of underwater propeller with compressible and incompressible flow solvers" (in Korean), J. Acoust. Soc. Kr. 40, 261-269 (2021). 

  15. J. Jeong, I. Kim, D. Yoon, S. Kim, and D. You, "Numerical analysis of underwater radiated noise over a marine propeller" (in Korean), J. Comput. Fluids Eng. 26, 17-24 (2021). 

  16. K. Fujiyama and Y. Nakashima, "Numerical prediction of acoustic noise level induced by cavitation on ship propeller at behind-hull condition," Proceedings of the 5th Symposium on Marine Propulsors, SMP. 17, 739-744 (2017). 

  17. S. Kim, C. Cheong, W. Park, and H. Seol, "Numerical investigation of cavitation flow around hydrofoil and its flow noise" (in Korean), Trans. Kr. Soc. Noise Vib. Eng. 26, 141-147 (2016). 

  18. S. Kim, C. Cheong, and W. Park, "Numerical investigation into the effects of viscous flux on cavitation flow around hydrofoil" (in Korean), Trans. Kr. Soc. Noise Vib. Eng. 721-729 (2017). 

  19. S. Kim, C. Cheong, and W. Park, "Numerical investigation into effects of viscous flux vectors on hydrofoil cavitation flow and its radiated flow noise," Appl. Sci. 8, 289 (2018). 

  20. M. Ha, C. Cheong, H. Seol, B. Paik, M. Kim, and Y. Jung, "Development of efficient and accurate parallel computation algorithm using moving overset grids on background multi-domains for complex two-phase flows," Appl. Sci. 8, 1937 (2018). 

  21. S. Kim, C. Cheong, and W. Park, "Numerical investigation on cavitation flow of hydrofoil and its flow noise with emphasis on turbulence models," AIP Advances, 7, 065114 (2017). 

  22. G. Ku, C. Cheong, S. Kim, Cong-Tu Ha, and W. Park, "Numerical study on cavitation flow and noise in the flow around a Clark-Y Hydrofoil" (in Korean), Trans. Kr. Soc. Mech. Eng. A 41, 87-94 (2017). 

  23. S. Kim, C. Cheong, and W. Park, "Numerical investigation into effects of viscous flux vectors on hydrofoil cavitation flow and its radiated flow noise," Appl. Sci. 8, 289 (2018). 

  24. G. Ku, C. Cheong, I. Park, and H. Seol, "Numerical investigation of blade tip vortex cavitation noise using Reynolds-averaged Navier-Stokes simulation and bubble dynamics model" (in Korean), J. Acoust. Soc. Kr. 39, 77-86 (2020). 

  25. B. Paik, K. Kim, K. Kim, and Y. Park, "PIV Measurements of rudder inflow induced by propeller revolution in hull wake"(in Korean), J. Soc. Nav. Arch. Kr. 48, 128-133 (2011). 

  26. A. Posa, R. Broglia, and E. Balaras, "The wake flow downstream of a propeller-rudder system," International J. Heat and Fluid Flow, 87, 108765 (2021). 

  27. H. Jeong, J. Lee, Y. Kim, and H. Seol, "Estimation of the noise source level of a commercial ship using onboard pressure sensors," Appl. Sci. 11, 1243 (2021). 

  28. M. S. Gritskevich, A. V. Garbaruk, J. Schutze, and F. R. Menter, "Development of DDES and IDDES formulations for the k-ω shear stress transport model." Flow, Turbulence and Combustion, 88, 431-449 (2012). 

  29. T. Ikeda, S. Enomoto, K. Yamamoto, and K. Amemiya, "Quadrupole corrections for the permeable- surface Ffowcs Williams-Hawkings equation," AIAA J. 55, 2307-2320 (2017). 

  30. L. V. Lopes, D. D. Boyd Jr, D. M. Nark, and K. E. Wiedemann, "Identification of spurious signals from permeable Ffowcs Williams and Hawkings surfaces," AHS. Int. Annual Forum and Technology Display, NF1676L-25336 (2017). 

  31. H. Seol, "Time domain method for the prediction of pressure fluctuation induced by propeller sheet cavitation: Numerical simulations and experimental validation", Ocean Eng. 72, 287-296 (2013). 

저자의 다른 논문 :

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로