$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

초등학교 과학 교육과정에 현대 물리 도입 가능성 탐색
Exploring the Possibility of Introducing Modern Physics into Elementary School Science Curriculum 원문보기

초등과학교육 = Journal of Korean elementary science education, v.41 no.2, 2022년, pp.199 - 216  

박종원 (전남대학교) ,  윤혜경 (춘천교육대학교) ,  이인선 (충북대학교)

초록

본 연구에서는 초등학교 과학 교육과정에 현대 물리 내용을 도입하는 것의 가능성을 논의하였다. 초등학생에게 현대 물리를 지도하는 것이 왜 필요한지 현대 물리 도입의 필요성을 논의하였고, 실제로 초등학생에게 현대 물리를 지도한 외국의 사례와 연구 결과를 살펴보았다. 그리고 구체적으로 우리나라 초등학교 과학 교육과정에 현대 물리를 도입하기 위한 몇 가지 방안을 제안하였다. 현대 물리는 학생이 경험하는 다양한 일상적 상황과 연계될 수 있으며, 학생들이 배우고 싶은 내용으로서 과학에 대한 흥미와 호기심을 높일 수 있다. 또한, 아직 고전적 자연관이 굳어지지 않은 초등학생에게 현대 물리를 도입하면 새로운 자연관 형성을 도울 수 있다. 최근 현대 물리를 초등 수준에 도입하기 위한 해외의 몇몇 프로젝트에서도 학생의 이해와 흥미 증가에 관한 긍정적인 결과를 보고하고 있다. 연구자들은 초등학생 수준에서 이해가 가능할 것으로 생각하는 몇 가지 주제에 대해 구체적인 내용수준과 지도방안을 간략하게 제안하였다. 이러한 제안은 후속 연구를 통해 적절한 자료개발과 경험적이고 실증적인 연구를 통해 그 가능성과 효과가 입증되어야 하지만 현대 물리 도입 가능성에 대한 논의를 진전시킬 것으로 기대한다.

Abstract AI-Helper 아이콘AI-Helper

This study explored the possibility of introducing modern physics into the elementary school science curriculum. The study discussed the need of introducing modern physics to elementary school students and examined the results of certain projects and studies on teaching modern physics to elementary ...

주제어

표/그림 (6)

참고문헌 (53)

  1. 노경희, 지형근, 임석현(2010). 증강현실 콘텐츠 기반 수업이 학업성취, 학습흥미, 몰입에 미치는 효과. 한국콘텐츠학회논문지, 10(2), 1-13. 

  2. 박종원(2002). 학생 개념체계의 연속적 세련화와 정교화를 통한 개념 변화 분석: 이론적 논의를 중심으로. 한국과학교육학회지, 22(2), 357-377. 

  3. 박종원(2016). 과학적 소양에 대한 세 가지 논의: 통합적 이해, 교육과정에의 정착, 시민교육을 중심으로. 한국과학교육학회지, 36(3), 413-422. 

  4. 박종원, 이인선(2021). 예비 물리교사와 물리교사의 상대론과 양자론에 대한 인식. 새물리, 71(5), 476-489. 

  5. 박준형, 전영석(2020). 초등학교에서 무게와 질량 단위도입의 문제에 대한 고찰. 새물리, 70(7), 603-612. 

  6. 조헌국(2014). 20세기 상대성이론과 미술의 관계의 논의를 통한 과학교육에 대한 시사점. 새물리, 64(5), 550-559. 

  7. 최섭, 김희백(2020). 가상현실 특성을 반영한 VR 프로그램 기반 수업 적용 및 효과. 한국과학교육학회지, 40(2), 203-216. 

  8. Anderson, L. W., Krathwohl, D. R., Airasian, P. W., Cruikshank, K. A., Mayer, R. E., Pintrich, P. R., Rath, J., & Wittrock, M. (2001). A taxonomy for learning, teaching, and assessing: A revision of Bloom's taxonomy of educational objectives. Longman. 

  9. Angell, C., Guttersrud, O., Henriksen, E. K., & Isnes, A. (2004). Physics: Frightful, but fun. Pupils' and teachers' views of physics and physics teaching. Science Education, 88(5), 683-706. 

  10. Archenhold, F., Bell, J., Donnelly, J., Johnson, S., & Welford, G. (1988). Science at age 15: A review of APU survey findings 1980-84, HMSO. 

  11. Arriassecq, I., & Greca, I. M. (2012). A teaching-learning sequence for the special relativity theory at high school level historically and epistemologically contextualized. Science & Education, 21(6), 827-851. 

  12. Barker, V., & Millar, R. (2000). Students' reasoning about basic chemical thermodynamics and chemical bonding: What changes occur during a context-based post-16 chemistry course?. International Journal of Science Education, 22(11), 1171-1200. 

  13. Bruner, J. S. (1977). The process of education. Harvard university press. 

  14. Choudhary, R. K., Foppoli, A., Kaur, T., Blair, D. G., Zadnik, M., & Meagher, R. (2018). Can a short intervention focused on gravitational waves and quantum physics improve students' understanding and attitude?. Physics Education, 53(6), 065020. 

  15. DeBoer, G. E. (2000). Scientific literacy: Another look at its historical and contemporary meanings and its relationship to science education reform. Journal of Research in Science Teaching, 37(6), 582-601. 

  16. Dunser, A., & Hornecker, E. (2007, February). Lessons from an AR book study. In Proceedings of the 1st international conference on Tangible and embedded interaction (pp. 179-182). ACM. 

  17. Eilks, I., & Hofstein, A. (2017). Curriculum development in science education. In K. S. Taber & B. Akpan (Eds.), Science education: New directions in mathematics and science education (pp. 169-181). Sense Publishers. 

  18. Foppoli, A., Choudhary, R., Blair, D., Kaur, T., Moschilla, J., & Zadnik, M. (2018). Public and teacher response to Einsteinian physics in schools. Physics Education, 54(1), 015001. 

  19. Fullarton, S., Walker, M., Ainley, J., & Hillman, K. (2003). Patterns of participation in year 12 (LSAY Research Report No. 33). Australian Council for Educational Research. 

  20. Gedigk, K., & Pospiech, G. (2015). Development of students' interest in particle physics as effect of participating in a Masterclass. Il Nuovo Cimento C, 38(3), Article No. 100. 

  21. Gilbert, J. K. (2006). On the nature of "context" in chemical education. International Journal of Science Education, 28(9), 957-976. 

  22. Hadzidaki, P., Kalkanis, G., & Stavrou, D. (2000). Quantum mechanics: a systemic component of the modern physics paradigm. Physics Education, 35(6), 386-392. 

  23. Hofstein, A., & Kesner, M. (2006). Industrial chemistry and school chemistry: Making chemistry studies more relevant. International Journal of Science Education, 28(9), 1017-1039. 

  24. Kafai, Y. B., & Dede, C. (2014). Learning in virtual worlds. In R. K. Sawyer (Ed.), The Cambridge handbook of the learning sciences (pp. 561-581). Cambridge University Press. 

  25. Kaur, T., Blair, D., Moschilla, J., Stannard, W., & Zadnik, M. (2017). Teaching Einsteinian physics at schools: Part 3, review of research outcomes. Physics Education, 52(6), 065014. 

  26. Keeves, L., & Aikenhead, G. (1995). Science curricula in a changing world. In B. J. Fraser & H. J. Walberg (Eds.) Improving science education (pp. 13-15), University of Chicago Press. 

  27. King, D., & Ritchie, S. M. (2012). Learning science through real-world contexts. In B. J. Fraser, K. Tobin, & C. J. McRobbie (Eds.), 2nd International handbook of science education, Vol. 24 (pp. 69-80). Springer. 

  28. Lakatos, I. (1994). Falsification and the methodology of scientific research programmes. In J. Worrall & G. Currie (Eds.), The methodology of scientific research programmes: Philosophical papers Vol. 1 (pp. 8-101). Cambridge University Press. 

  29. Lazzeroni, C., Malvezzi, S., & Quadri, A. (2021). Teaching science in today's society: The case of particle physics for primary schools. Universe, 7(6), 169-179. 

  30. Lubben, F., Campbell, B., & Dlamini, B. (1996). Contextualizing science teaching in Swaziland: Some student reactions. International Journal of Science Education, 18(3), 311-320. 

  31. Martin, M. O., Mullis, I. V. S., Foy, P., & Hooper, M. (2016). TIMSS 2015 international results in science. IEA: TIMMS & PIRLS. Retrieved from http://timssandpirls.bc.edu/timss2015/international-results/ 

  32. Marzano, R. J., & Kendall, J. S. (2007). The new taxonomy of educational objectives. Corwin Press. 

  33. McGrath, D., Savage, C., Williamson, M., Wegener, M., & McIntyre, T. (2008). Teaching special relativity using virtual reality. In A. Hugman & K. Placing (Eds.), Proceedings of the 14th UniServe science conference (pp. 67-73). UniServe Science. 

  34. Migdal, P., Jankiewicz, K., Grabarz, P., Decaroli, C., & Cochin, P. (2022). Visualizing quantum mechanics in an interactive simulation-Virtual lab by quantum flytrap. arXiv preprint arXiv:2203.13300. 

  35. Millar, R., & Osborne, J. (1998). Beyond 2000: Science education for the future. King's College. 

  36. Milner, B. (1986). Why teach science and why to all? In J. Nellist & B. Nicholl (Eds.), The ASE science teachers' handbook (pp. 1-10), Hutchinson. 

  37. Murphy, P., & Whitelegg, E. (2006). Girls and physics: Continuing barriers to 'belonging'. The Curriculum Journal, 17(3), 281-305. 

  38. Nasir, N. S., Rosebery, A. S., Warren, B., & L ee, C. D. (2014). Learning as a cultural process: Achieving equity through diversity. In R. K. Sawyer (Ed.), The Cambridge handbook of the learning sciences (2nd ed., pp. 728-749). Cambridge University Press. 

  39. NGSS Lead States (2013). Next generation science standards: For states, by states. NGSS Lead States. 

  40. Oon, P. T., & Subramaniam, R. (2010). Views oh physics teachers on how to address the declining enrollment in physics at the university level. Research in Science & Technological Education, 28(3), 277-289. 

  41. Osborne, J., Simon, S., & Collins, S. (2003). Attitudes towards science: A review of the literature and its implications. International Journal of Science Education, 25(9), 1049-1079. 

  42. Park, J., Liu, C., Huang, C., Shen, M., & Shin, M, K. (2016). Introducing modern science and high technology in schools. In H. S. Lin, J. K. Gilbert & C. J. Lien (Eds.), Science education research and practice in east asia: Trends and perspectives (pp. 379-404), Higher Education Publishing. 

  43. Pavlidou, M., & Lazzeroni, C. (2016). Particle physics for primary schools-enthusing future physicists. Physics Education, 51(5), 054003. 

  44. Pitts, M., Venville, G., Blair, D., & Zadnik, M. (2014). An exploratory study to investigate the impact of an enrichment program on aspects of Einsteinian physics on year 6 students. Research in Science Education, 44(3), 363-388. 

  45. Ramsden, J. M. (1997). How does a context-based approach influence understanding of key chemical ideas at 16+?. International Journal of Science Education, 19(6), 697-710. 

  46. Ruggiero, M. L., Mattiello, S., & Leone, M. (2021). Physics for the masses: Teaching einsteinian gravity in primary school. Physics Education, 56(6), 065011. 

  47. Savage, C. M., Searle, A., & McCalman, L. (2007). Real time relativity: Exploratory learning of special relativity. American Journal of Physics, 75(9), 791-798. 

  48. Shabajee, P., & Postlethwaite, K. (2000). What happened to modern physics?. School Science Review, 81(297), 51-56. 

  49. Tytler, R. (1998). Children's conceptions of air pressure: Exploring the nature of conceptual change. International Journal of Science Education, 20(8), 929-958. 

  50. Wierstra, R. F., & Wubbels, T. (1994). Student perception and appraisal of the learning environment: Core concepts in the evaluation of the PLON physics curriculum. Studies in Educational Evaluation, 20(4), 437-455. 

  51. Wu, H. K., Lee, S. W. Y., Chang, H. Y., & Liang, J. C. (2013). Current status, opportunities and challenges of augmented reality in education. Computers & Education, 62, 41-49. 

  52. Yu, C. H., & Cole, J. M. (2014). Friend or Foe? Common sense in science education from the perspective of history and philosophy of science. Journal of Education, Society & Behavioural Science, 4(5), 673-690. 

  53. Zochlinga, S., Hopfa, M., Woitheb, J., & Schmelingb, S. (2020). Spreading interest in particle physics among high-school students-what matters?. In Proceedings of 40th International Conference on High Energy physics-ICHEP2020 (pp. 964-969). Sissa Medialab. 

저자의 다른 논문 :

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로