$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

방글라데시 지하수 내 비소 오염 현황 및 처리기술
Current Status and Technologies for Treating Groundwater Arsenic Pollution in Bangladesh 원문보기

한국습지학회지 = Journal of wetlands research, v.24 no.2, 2022년, pp.142 - 154  

(공주대학교 건설환경공학과) ,  (공주대학교 건설환경공학과) ,  전민수 (공주대학교 건설환경공학과) ,  김이형 (공주대학교 건설환경공학과)

초록
AI-Helper 아이콘AI-Helper

지하수의 비소(As) 오염은 방글라데시의 주요 문제 중 하나이다. 독성은 부종, 피부암, 방광암, 폐암, 각화 과다증, 조산, 흑사병과 같은 심각한 건강 문제를 야기한다. 지하수의 오염은 주로 인위적 활동의 영향을 받는 지역의 지질학적 특성에서 발생된다. 방글라데시 국민의 대부분이 지하수에 식수를 의존하고 있기에 비소 오염 현황을 조사하고 물이 부족한 지역에 안전한 식수를 제공하기 위하여 비소 처리를 위한 수처리 기술이 필요하다. 따라서 본 연구는 92개의 논문을 기반으로 방글라데시의 지하수 As 오염 관련 최근 현황과 다양한 저비용 정화 기술에 대한 트렌드를 조사하였다. 방글라데시에서 지하수 비소 오염이 가장 높은 지역은 Brahamanbariya, Tangail, Barisal, Pabna, Patuakhali 및 Kurigram등 총 4곳이며, Magura 및 Faridpur 등의 지역에서는 비소 농도가 0.05mg/L를 초과한다. WHO 표준 가이드라인 값(<0.01 mg/L)을 만족하는 지역은 Kushtia, Khagrachari, Jessore, Dinajpur, Meherpur 및 Munshiganj 등 총 6곳으로 나타났다. 수중에서 As를 처리하는 기술이 다양하다. 시간-비용효율적인 처리 방법은 Mg-Fe계 Hydrotalcite와 유사 화합물, electro-chemical As remediation (ECAR) reactor, aerated electrocoagulation 등이 적용되고 있다. 전반적으로 예산, 운영 및 유지 관리 비용, 재료의 가용성 및 전문 지식 요구 사항 등을 고려하여 수질 내 비소를 처리해야 한다.

Abstract AI-Helper 아이콘AI-Helper

Arsenic (As) contamination in groundwater is one of the main problems in Bangladesh. As toxicity causes serious human health problems such as edema, skin cancer, bladder cancer, lung cancer, hyperkeratosis, premature birth, and black foot disease. As contamination in groundwater mainly originates fr...

주제어

표/그림 (5)

AI 본문요약
AI-Helper 아이콘 AI-Helper

성능/효과

  • A method for determining the relative feasibility of various As treatment processes were utilized to systematically select the most feasible option for treating As in the groundwater of Bangladesh. Using the removal efficiency and treatment cost as the evaluation criteria, the items were categorized as highly feasible (high), moderately feasible (moderate), and not feasible (low). The data collected from scientific publications were standardized using Equation 1 and the items were rated according to their feasibility of application in Bangladesh.
본문요약 정보가 도움이 되었나요?

참고문헌 (102)

  1. Adeloju, S. B., Khan, S., & Patti, A. F. (2021). Arsenic contamination of groundwater and its implications for drinking water quality and human health in under-developed countries and remote communities-a review. Applied Sciences, 11(4), 1926. 

  2. Ahmed, A., Ghosh, P. K., Hasan, M., & Rahman, A. (2020). Surface and groundwater quality assessment and identification of hydrochemical characteristics of a southwestern coastal area of Bangladesh. Environmental monitoring and assessment, 192(4), 1-15. 

  3. Ahmed, M. F. (2001, May). An overview of arsenic removal technologies in Bangladesh and India. In Proceedings of BUET-UNU international workshop on technologies for arsenic removal from drinking water, Dhaka (pp. 5-7). 

  4. Ahmed, N., Bodrud-Doza, M., Islam, S. M., Choudhry, M. A., Muhib, M., Zahid, A., & Quaiyum, A. (2019). Hydrogeochemical evaluation and statistical analysis of groundwater of Sylhet, northeastern Bangladesh. Acta Geochimica, 38(3), 440-455. 

  5. Ahn, J.S., 2012.Geochemical occurrences of arsenic and fluoride in bedrock groundwater: a case study in Geumsan County, Korea. Environ. Geochem. Health 34,43e54. 

  6. Ali, M. R., Faruque, M. O., Islam, M. T., Molla, M. T., Ahammed, M. S., Mahmud, S., & Mohiuddin, A. K. M. (2021). Appraisal of Heavy Metal Presence and Water Quality having Microbial Load and Associated Human Health Risk: A study on tube-well water in Nalitabari township of Sherpur district, Bangladesh 

  7. Alhumairi, A. M., Hamouda, R. A., & Saddiq, A. A. (2021). Bio-remediation of Most Contaminated Sites by Heavy Metals and Hydrocarbons In Dhiba Port Kingdom of Saudi Arabia Using Chlorella Vulgaris. 

  8. Amrose, S.E., Bandaru, S.R.S., Delaire, C., van Genuchten, C.M., Dutta, A., DebSarkar, A., Orr, C., Roy, J., Das, A., & Gadgil, A.J. (2014). Electro-chemical arsenic remediation: field trials in West Bengal. Science of the Total Environment, 488, 539-546. DOI: 10.1016/j.scitotenv.2013.11.074 

  9. Ayers, J. C., Goodbred, S., George, G., Fry, D., Benneyworth, L., Hornberger, G., & Akter, F. (2016). Sources of salinity and arsenic in groundwater in southwest Bangladesh. Geochemical transactions, 17(1), 1-22. 

  10. Aziz, Z., Bostick, B. C., Zheng, Y., Huq, M. R., Rahman, M. M., Ahmed, K. M., & Van Geen, A. (2017). Evidence of decoupling between arsenic and phosphate in shallow groundwater of Bangladesh and potential implications. Applied geochemistry, 77, 167-177. 

  11. Bangladesh Bureau of Statistics (http://www.bbs.gov.bd/) 

  12. Barnaby, R., Liefeld, A., Jackson, B. P., Hampton, T. H., & Stanton, B. A. (2017). Effectiveness of tabletop water pitcher filters to remove arsenic from drinking water. Environmental Research, 158, 610-615. DOI: 10.1016/j.envres.2017.07.018 

  13. Bissen, M., & Frimmel, F. H. (2003). Arsenic-a review. Part II: oxidation of arsenic and its removal in water treatment. CLEAN-Soil, Air, Water, 31(2), 97-107. DOI: 10.1002/aheh.200300485 

  14. Biswal, T.K., Ray, S.K., and Grasemann, B. (eds), Structural Geometry of Mobile Belts of the Indian Subcontinent. Cham: Springer Nature Switzerland AG, pp. 91-109. 

  15. Bundschuh, J., Bhattacharya, P., Sracek, O., Mellano, M., Ramirez, A.; Storniolo, A., Martin, R., Cortes, J., Litter, M. & Jean, J.- S. (2011). Arsenic removal from groundwater of the Chaco-Pampean Plain (Argentina) using natural geological materials as adsorbents. Journal of Environmental Science and Health, Part A, 46(11), 1297-1310. DOI: 10.1080/10934529.2011.598838 

  16. Callegari, A., Ferronato, N., Rada, E. C., Capodaglio, A. G., & Torretta, V. (2018). Assessment of arsenic removal efficiency by an iron oxide-coated sand filter process. Environmental Science and Pollution Research, 25(26), 26135-26143. 

  17. Chakraborti, D., Rahman, M. M., Mukherjee, A., Alauddin, M., Hassan, M., Dutta, R. N. ... & Hossain, M. M. (2015). Groundwater arsenic contamination in Bangladesh-21 Years of research. Journal of Trace Elements in Medicine and Biology, 31, 237-248. 

  18. Chakraborti, D., Rahman, M. M., Das, B., Murrill, M., Dey, S., Mukherjee, S. C. ... & Quamruzzaman, Q. (2010). Status of groundwater arsenic contamination in Bangladesh: a 14-year study report. Water Research, 44(19), 5789-5802. 

  19. Chen, J., Wang, S., Zhang, S., Yang, X., Huang, Z., Wang, C., Wei, Q., Zhang, G., Xiao, J., Jiang, F., Chang, J., Xiang, X., & Chang, J. (2015). Arsenic pollution and its treatment in Yangzonghai Lake in China: In situ remediation. Ecotoxicology and Environmental Safety, 122, 178-185. DOI: 10.1016/j.ecoenv.2015.07.032 

  20. Chowdhury, M. A., Walji, N., Mahmud, M., & MacDonald, B. D. (2017). Based microfluidic device with a gold nanosensor to detect arsenic contamination of groundwater in Bangladesh. Micromachines, 8(3), 71. 

  21. Clifford, D, A., Sorg, T. J., Ghurye, G. L. (1990) Ion exchange and inorganic adsorption In: Pontius F (Eds) Water Quality and Treatment. (pp. 1-90), American Water Works Association, McGraw Hill, New York. 

  22. Crabbe, H., Fletcher, T., Close, R., Watts, M. J., Ander, E. L., Smedley, P. L., & Leonardi, G. S. (2017). Hazard ranking method for populations exposed to arsenic in private water supplies: relation to bedrock geology. International journal of environmental research and public health, 14(12), 1490. 

  23. Cui, J., Jing, C., Che, D., Zhang, J., & Duan, S. (2015). Groundwater arsenic removal by coagulation using ferric (III) sulfate and polyferric sulfate: a comparative and mechanistic study. Journal of Environmental Sciences, 32, 42-53. DOI: 10.1016/j.jes.2014.10.020 

  24. Dhar, P. K., Naznin, A., & Ara, M. H. (2021). Health risks assessment of heavy metal contamination in drinking water collected from different educational institutions of Khulna city corporation, Bangladesh. 

  25. Faroque, S., & South, N. (2022). Water pollution and environmental injustices in Bangladesh. International Journal for Crime, Justice and Social Democracy, 11(1), 1-13. 

  26. Feistel, U., Otter, P., Kunz, S., Grischek, T., & Feller, J. (2016). Field tests of a small pilot plant for the removal of arsenic in groundwater using coagulation and filtering. Journal of Water Process Engineering, 14, 77-85. 

  27. Figoli, A., Hoinkis, J. and Bundschuh, J. (Eds.) (2016). Membrane technologies for water treatment: Removal of toxic trace elements with emphasis on arsenic, fluoride and uranium. Boca Raton: CRC Press. (Sustainable water developments, Volume 1) 

  28. Ganguli, S., Rifat, M., Das, D., Islam, S., & Islam, M. N. (2021). Groundwater Pollution in Bangladesh: A Review. Grassroots Journal of Natural Resources, 4(04), 115-145. 

  29. Glodowska, M., Stopelli, E., Schneider, M., Rathi, B., Straub, D., Lightfoot, A., & Kappler, A. (2020). Arsenic mobilization by anaerobic iron-dependent methane oxidation. Communications Earth & Environment, 1(1), 1-7. 

  30. Gonzalez-Horta, C., Ballinas-Casarrubias, L., S anchez-Ramirez, B., Ishida, M., Bar- rera-Hernandez, A., Guti errez-Torres, D., Zacarias, O., Saunders, R., Drobn a, Z., Mendez, M., Garcia-Vargas, G., 2015. A concurrent exposure to arsenic and fluoride from drinking water in Chihuahua, Mexico. Int. J. Environ. Res. Publ. Health 12 (5), 4587e4601. https://doi.org/10.3390/ijerph120504587. 

  31. Goren, A. Y., & Kobya, M. (2021). Arsenic removal from groundwater using an aerated electrocoagulation reactor with 3D Al electrodes in the presence of anions. Chemosphere, 263, 128253. 

  32. Groundwater: a review with a discussion on public health risk. International Journal of Environmental Research and Public Health, 15(10), 2278. 

  33. Hartland, A., Larsen, J. R., Andersen, M. S., Baalousha, M., & O'Carroll, D. (2015). Association of arsenic and phosphorus with iron nanoparticles between streams and aquifers: implications for arsenic mobility. Environmental science & technology, 49(24), 14101-14109. 

  34. Harvey, C. F., Swartz, C. H., Badruzzaman, A. B. M., Keon-Blute, N., Yu, W., Ali, M. A., ... & Ahmed, M. F. (2005). Groundwater arsenic contamination on the Ganges Delta: biogeochemistry, hydrology, human perturbations, and human suffering on a large scale. Comptes Rendus Geoscience, 337(1-2), 285-296. 

  35. Hasan, M. M., Ahmed, K. M., Sultana, S., Rahman, M. S., Ghosh, S. K., & Ravenscroft, P. (2018). Investigations on groundwater buffering in Khulna-Satkhira coastal belt using managed aquifer recharge. In Groundwater of South Asia (pp. 453-462). Springer, Singapore. 

  36. Hasan, M. M., Shafiquzzaman, M., Nakajima, J., & Bari, Q. H. (2012). Application of a simple arsenic removal filter in a rural area of Bangladesh. Water Science and Technology: Water Supply, 12(5), 658-665. DOI: 10.2166/ws.2012.039 

  37. Hasanuzzaman, M., Song, X., Han, D., Zhang, Y., & Hussain, S. (2017). Prediction of groundwater dynamics for sustainable water resource management in Bogra District, Northwest Bangladesh. Water, 9(4), 238. 

  38. Haugen, E. A., Jurgens, B. C., Arroyo-Lopez, J. A., & Bennett, G. L. (2021). Groundwater development leads to decreasing arsenic concentrations in the San Joaquin Valley, California. Science of the Total Environment, 771, 145223. 

  39. He, J., Bardelli, F., Gehin, A., Silvester, E., & Charlet, L. (2016). Novel chitosan goethite bio-nano composite beads for arsenic remediation. Water Research, 101, 1-9. DOI: 10.1016/j.watres.2016.05.032. 

  40. He, X., Li, P., Ji, Y., Wang, Y., Su, Z., & Elumalai, V. (2020). Groundwater arsenic, fluoride, associated arsenicosis, and fluorosis in China: occurrence, distribution and management. Exposure and health, 12(3), 355-368. 

  41. Hoinkis, J., Kurz, E. C., Hellriegel, U., Luong, T. V., & Bundschuh, J. (2019). Sustainable small-scale, membrane-based arsenic remediation for developing countries. In Environmental Arsenic in a Changing World (pp. 623-626). CRC Press 

  42. Hoover, J., Gonzales, M., Shuey, C., Barney, Y., & Lewis, J. (2017). Elevated arsenic and uranium concentrations in unregulated water sources on the Navajo Nation, USA. Exposure and Health, 9(2), 113-124. 

  43. Hose, G. C., Symington, K., Lott, M. J., & Lategan, M. J. (2016). The toxicity of arsenic (III), chromium (VI) and zinc to groundwater copepods. Environmental Science and Pollution Research, 23(18), 18704-18713. 

  44. Hossain, M.S., Khan, M.S.H., Abdullah, R., and Chowdhury, K.R., 2020a. Tectonic development of the Bengal Basin in relation to the Fold-Thrust Belt to the East and to the North. In Biswal, T.K., Ray, 

  45. Hossain, M. S., Xiao, W., Khan, M. S. H., Chowdhury, K. R., & Ao, S. (2020). Geodynamic model and tectonic-structural framework of the Bengal Basin and its surroundings. Journal of Maps, 16(2), 445-458. 

  46. Hossain, S., Hosono, T., Ide, K., Matsunaga, M., & Shimada, J. (2016). Redox processes and occurrence of arsenic in a volcanic aquifer system of Kumamoto Area, Japan. Environmental Earth Sciences, 75(9), 1-19. 

  47. Hossain, S., Hosono, T., Yang, H., & Shimada, J. (2016). Geochemical processes controlling fluoride enrichment in groundwater at the western part of Kumamoto area, Japan. Water, Air, & Soil Pollution, 227(10), 1-14. 

  48. Houben, G. J., Kaufhold, S., Dietel, J., Rohm, H., Groger-Trampe, J., & Sander, J. (2019). Investigation of the source of acidification in an aquifer in Northern Germany. Environmental Earth Sciences, 78(3), 1-12. 

  49. Howladar, M. F., Al Numanbakth, M., & Faruque, M. O. (2018). An application of Water Quality Index (WQI) and multivariate statistics to evaluate the water quality around Maddhapara Granite Mining Industrial Area, Dinajpur, Bangladesh. Environmental Systems Research, 6(1), 1-18. 

  50. Hrudey, S. E., & Hrudey, E. J. (2019). Common themes contributing to recent drinking water disease outbreaks in affluent nations. Water Supply, 19(6), 1767-1777. 

  51. Human Rights Watch (2016) Nepotism and neglect: The failing response to arsenic in the drinking water of Bangladesh's rural poor. New York: Human Rights Watch. https://www.hrw.org/report/2016/04/06/nepotismand-neglect/failing-response-arsenic-drinking-water-bangladeshs-rural. 

  52. Islam, S. M., Majumder, R. K., Uddin, M. J., Khalil, M., & Ferdous Alam, M. (2017). Hydrochemical characteristics and quality assessment of groundwater in Patuakhali district, southern coastal region of Bangladesh. Exposure and health, 9(1), 43-60. 

  53. Jiang, J. Q., Ashekuzzaman, S. M., Jiang, A., Sharifuzzaman, S. M., & Chowdhury, S. R. (2013). Arsenic contaminated groundwater and its treatment options in Bangladesh. International journal of environmental research and public health, 10(1), 18-46. 

  54. Kabir, M. M., Hossain, N., Islam, A. R. M. T., Akter, S., Fatema, K. J., Hilary, L. N. ... & Choudhury, T. R. (2021). Characterization of groundwater hydrogeochemistry, quality, and associated health hazards to the residents of southwestern Bangladesh. Environmental Science and Pollution Research, 28(48), 68745-68761. 

  55. Kato, M., Kumasaka, M. Y., Ohnuma, S., Furuta, A., Kato, Y., Shekhar, H. U., Kojima, M., Koike, Y., Nguyen Dinh Thang, N. D., Ohgami, N., Ly, T. B., Xiaofang Jia, X., Yetti, H., Naito, H., Ichihara, G., & Yajima, I. (2013). Comparison of barium and arsenic concentrations in well drinking water and in human body samples and a novel remediation system for these elements in well drinking water. PloS One, 8(6). DOI: 10.1371/journal.pone.0066681 

  56. Kim, D. H., Moon, S. H., Ko, K. S., & Kim, S. (2020). Microbial Community Structures Related to Arsenic Concentrations in Groundwater Occurring in Haman Area, South Korea. Economic and Environmental Geology, 53(6), 655-666. 

  57. Kim, D. M., Kwon, O. H., Oh, Y. S., & Lee, J. S. (2021). Interpreting complex geochemistry of groundwater in a coastal paddy field near a mine using isotopic signatures of sulfate and water. Environmental Geochemistry and Health, 43(10), 4105-4122. 

  58. Kumasaka, M. Y., Yamanoshita, O., Shimizu, S., Ohnuma, S., Furuta, A., Yajima, I., Nizam, S., Khalequzzaman, M., Shekhar, H. U., Nakajima, T. & Kato, M. (2013). Enhanced carcinogenicity by coexposure to arsenic and iron and a novel remediation system for the elements in well drinking water. Archives of Toxicology, 87(3), 439-447. DOI: 10.1007/s00204-012-0964-6 

  59. Lee, J. Y., Cha, J., & Raza, M. (2021). Groundwater development, use, and its quality in Korea: tasks for sustainable use. Water Policy, 23(6), 1375-1387 

  60. Lee, J. Y., Chaimongkalayon, N., Lim, J., Ha, H. Y., & Moon, S. H. (2016). Arsenic removal from groundwater using low-cost carbon composite electrodes for capacitive deionization. Water Science and Technology, 73(12), 3064-3071. DOI: 10.2166/wst.2016.135. 

  61. Lopez-Guzman, M., Alarcon-Herrera, M. T., Irigoyen-Campuzano, J. R., Torres-Castanon, L. A., & Reynoso-Cuevas, L. (2019). Simultaneous removal of fluoride and arsenic from well water by electrocoagulation. Science of the Total Environment, 678, 181-187. 

  62. Machingura F and Lally S (2017) The sustainable development goals and their trade-offs. Overseas Development Institute. https://cdn.odi.org/media/documents/11329.pdf 

  63. Maier, M. V., Isenbeck-Schroter, M., Klose, L. B., Ritter, S. M., & Scholz, C. (2017). In situ-mobilization of arsenic in groundwater-an innovative remediation approach. Procedia Earth and Planetary Science, 17, 452-455. 

  64. Majumder, S., Nath, B., Sarkar, S., Islam, S. M., Bundschuh, J., Chatterjee, D., & Hidalgo, M. (2013). Application of natural citric acid sources and their role on arsenic removal from drinking water: A green chemistry approach. Journal of Hazardous Materials, 262, 1167-1175. DOI: 10.1016/j.jhazmat.2012.09.00 

  65. Mani, P., Kim, Y., Lakhera, S. K., Neppolian, B., & Choi, H. (2021). Complete arsenite removal from groundwater by UV activated potassium persulfate and iron oxide impregnated granular activated carbon. Chemosphere, 277, 130225 

  66. Massachusetts Institute of Technology (2009) Dissolved arsenic in Bangladesh drinking water is from human alteration of landscape. ScienceDaily, 16 November. www.sciencedaily.com/releases/2009/11/091115134130.htm 

  67. Mathieu, J. L., Gadgil, A. J., Addy, S. E., & Kowolik, K. (2010). Arsenic remediation of drinking water using iron oxide coated coal bottom ash. Journal of Environmental Science and Health, Part A, 45(11), 1446-1460. DOI: 10.1080/10934529.2010.500940. 

  68. Medunic, G., Fiket, Z. & Ivanic, M. (2020). Arsenic contamination status in Europe, Australia, and other parts of the world. In Arsenic in Drinking Water and Food (pp. 183-233). Springer, Singapore. 

  69. Meharg AA, Deacon C, Campbell RC, Carey AM, Williams PN, Feldmann J, Raab A. Inorganic arsenic levels in rice milk exceed EU and US drinking water standards. J Environ Monit. 2008 Apr;10(4):428-31. doi: 10.1039/b800981c. Epub 2008 Mar 7. PMID: 18385862. 

  70. Middleton, D. R. S., Watts, M. J., Hamilton, E. M., Ander, E. L., Close, R. M., Exley, K. S., ... & Polya, D. A. (2016). Urinary arsenic profiles reveal exposures to inorganic arsenic from private drinking water supplies in Cornwall, UK. Scientific reports, 6(1), 1-11. 

  71. Mihajlov, I., Mozumder, M. R. H., Bostick, B. C., Stute, M., Mailloux, B. J., Knappett, P. S. ... & van Geen, A. (2020). Arsenic contamination of Bangladesh aquifers is exacerbated by clay layers. Nature communications, 11(1), 1-9. 

  72. Missimer, T. M., Teaf, C. M., Beeson, W. T., Maliva, R. G., Woolschlager, J., & Covert, D. J. (2018). Natural background and anthropogenic arsenic enrichment in Florida soils, surface water, and 

  73. Mohan, D., & Pittman Jr, C. U. (2007). Arsenic removal from water/wastewater using adsorbents-a critical review. Journal of Hazardous Materials, 142(1-2), 1-53. DOI: 10.1016/j.jhazmat.2007.01.006 

  74. Moni, S. A., Satter, G. S., Reza, A. H. M., & Ahsan, M. (2019). Hydrochemistry and arsenic contamination of shallow aquifers in Bidyananda and Nazimkhan Unions, Rajarhat Upazilla, Kurigram, Bangladesh. Journal of the Geological Society of India, 94(4), 395-404. 

  75. Olszewska, J. P., Heal, K. V., Winfield, I. J., Eades, L. J., & Spears, B. M. (2017). Assessing the role of bed sediments in the persistence of red mud pollution in a shallow lake (Kinghorn Loch, UK). Water Research, 123, 569-577. 

  76. Pfaff, A., Schoenfeld Walker, A., Ahmed, K. M., & van Geen, A. (2017). The reduc in exposure to arsenic from drinking well water in Bangladesh is limited by insufficient testing and awareness. Journal of Water, Sanitation and Hygiene for Development, 7(2), 331-339. 

  77. Pokhrel, D., & Viraraghavan, T. (2009). Biological filtration for removal of arsenic from drinking water. Journal of Environmental Management, 90(5), 1956-1961. DOI: 10.1016/j.jenvman.2009.01.004 

  78. Polya, D. A., & Middleton, D. R. (2017). Arsenic in drinking water: Sources & human exposure. Best practice guide on the control of arsenic in drinking water, 1-24. 

  79. Rahman, A., & Rahaman, H. (2018). Contamination of arsenic, manganese and coliform bacteria in groundwater at Kushtia District, Bangladesh: human health vulnerabilities. Journal of water and health, 16(5), 782-795. 

  80. Rahman, M. S., Reza, A. S., Ahsan, A., & Siddique, M. A. B. (2022). Arsenic Concentration in Groundwater of Meherpur District, Southwestern Bangladesh: Sources of Arsenic, Quality Evaluation for Irrigation and Health 

  81. Ramim, S. S., Sultana, H., Akter, T., & Ali, M. A. (2017). Removal of arsenic from groundwater using iron-coated jute-mesh structure. Desalination and Water Treatment, 100, 347-353. 

  82. Roy, P. K., Roy, B., & Roy, B. C. (2016). Assessment of groundwater quality for drinking and irrigation purposes in Comilla District of Bangladesh. International Journal of Scientific and Research Publications, 6(7), 52-59. 

  83. Saha, N., Bodrud-Doza, M., Islam, A. R. M., Begum, B. A., & Rahman, M. S. (2020). Hydrogeochemical evolution of shallow and deeper aquifers in central Bangladesh: arsenic mobilization process and health risk implications from the potable use of groundwater. Environmental Earth Sciences, 79(20), 1-18. 

  84. Sancha, A. M. (2006). Review of coagulation technology for removal of arsenic: case of Chile. Journal of Health, Population, and Nutrition, 24(3), 267-272. PMCID: PMC3013246 

  85. Sawada, N., Iwasaki, M., Inoue, M., Takachi, R., Sasazuki, S., Yamaji, T., ... & Tsugane, S. (2013). Dietary arsenic intake and subsequent risk of cancer: the Japan Public Health Center-based (JPHC) Prospective Study. Cancer Causes & Control, 24(7), 1403-1415. 

  86. Seddique, A. A., Masuda, H., Anma, R., Bhattacharya, P., Yokoo, Y., & Shimizu, Y. (2019). Hydrogeochemical and isotopic signatures for the identification of seawater intrusion in the pale beach 

  87. Shafiquzzaman, M., Azam, M. S., Mishima, I., & Nakajima, J. (2009). Technical and social evaluation of arsenic mitigation in rural Bangladesh. Journal of Health, Population, and Nutrition, 27(5), 674-683. PMCID: PMC2928078 

  88. Smiech, K. M., Tolsma, A., Kovacs, T., Dalbosco, V., Yasadi, K., Groendijk, L., & Agostinho, L. L. (2018). Comparing mixed media and conventional slow-sand filters for arsenic removal from groundwater. Water, 10(2), 119. 

  89. Sultana, M., Mou, T. J., Sanyal, S. K., Diba, F., Mahmud, Z. H., Parvez, A. K., & Hossain, M. A. (2017). Investigation of Arsenotrophic Microbiome in Arsenic-Affected Bangladesh Groundwater. Groundwater, 55(5), 736-746. 

  90. Thakur, L. S., & Mondal, P. (2017). Simultaneous arsenic and fluoride removal from synthetic and real groundwater by electrocoagulation process: parametric and cost evaluation. Journal of Environmental Management, 190, 102-112. DOI: 10.1016/j. jenvman.2016.12.053 

  91. The US Environmental Protection Agency, 2015. https://www.epa.gov/ 

  92. Uddin, M. G., Moniruzzaman, M., Quader, M. A., & Hasan, M. A. (2018). Spatial variability in the distribution of trace metals in groundwater around the Rooppur nuclear power plant in Ishwardi, Bangladesh. Groundwater for Sustainable Development, 7, 220-231. 

  93. United Nations (2020) Inequality in a rapidly changing world. https://www.un.org/development/desa/dspd/wpcontent/uploads/sites/22/2020/01/World-Social-Report-2020-FullReport.pdf 

  94. U.S Environmental Protection Agency. https://cfpub.epa.gov/safewater/arsenic/arsenictradeshow/arsenic.cfm?actionIon%20Exchange 

  95. Visoottiviseth, P., & Ahmed, F. (2008). Technology for remediation and disposal of arsenic. In D. M. Whitacre, H. Garelick, & H. Jones (Eds.), Reviews of Environmental Contamination Volume, 197 (pp. 77-128). New York, NY: Springer. 

  96. Wang, Y., Li, J., Ma, T., Xie, X., Deng, Y., & Gan, Y. (2021). The genes of geogenic celandontaminated groundwater: As, F and I. Critical Reviews in Environmental Science and Technology, 51(24), 2895-2933 

  97. Wei, M., Wu, J., Li, W., Zhang, Q., Su, F., & Wang, Y. (2021). Groundwater geochemistry and its impacts on groundwater arsenic enrichment, variation, and health risks in Yongning County, Yinchuan Plain of northwest China. Exposure and Health, 1-20. 

  98. Whaley-Martin, K. J., Mailloux, B. J., van Geen, A., Bostick, B. C., Ahmed, K. M., Choudhury, I., & Slater, G. F. (2017). Human and livestock waste as a reduced carbon source contributing to the release of arsenic to shallow Bangladesh groundwater. Science of the Total Environment, 595, 63-71. 

  99. WHO- World Health Organization. (2018). Arsenic [Fact sheet no. 372]. Retrieved from http://www.who.int/mediacentre/factsheets/ fs372/end 

  100. Yasmin, G., Islam, D., Islam, M. T., & Adham, A. K. M. (2019). Evaluation of groundwater quality for irrigation and drinking purposes in Barishal district of Bangladesh. Fundamental and Applied Agriculture, 4(1), 632-641. 

  101. Zhang, Z., Xiao, C., Adeyeye, O., Yang, W., & Liang, X. (2020). Source and mobilization mechanism of iron, manganese, and arsenic in groundwater of Shuangliao City, Northeast China. Water, 12(2), 534. 

  102. Zhou, Y., Zeng, Y., Zhou, J., Guo, H., Li, Q., Jia, R. ... & Zhao, J. (2017). Distribution of groundwater arsenic in Xinjiang, PR China. App 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로