$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 기후변화 시나리오별 한강유역의 수계별 수온상승 가능성
Potential Impacts of Climate Change on Water Temperature of the Streams in Han-River Basin 원문보기

한국물환경학회지 = Journal of Korean Society on Water Environment, v.38 no.1, 2022년, pp.19 - 30  

김민희 (환경부 한강유역환경청 측정분석과) ,  이정희 (환경부 한강유역환경청 측정분석과) ,  성경희 (환경부 한강유역환경청 측정분석과) ,  임철수 (환경부 한강유역환경청 측정분석과) ,  황원재 (고려대학교 환경생태공학과) ,  현승훈 (고려대학교 환경생태공학과)

Abstract AI-Helper 아이콘AI-Helper

Climate change has increased the average air temperature. Rising air temperature are absorbed by water bodies, leading to increasing water temperature. Increased water temperature will cause eutrophication and excess algal growth, which will reduce water quality. In this study, long-term trends of a...

주제어

표/그림 (8)

참고문헌 (51)

  1. Ahn, J. H. and Han, D. H. (2010). Projected climate change impact on surface water temperature in Korea, Journal of Korean Society on Water Environment, 26(1), 133-139. [Korean Literature] 

  2. Bouraoui, F., Galbiati, L., and Bidoglio, G. (2002). Climate change impacts on nutrient loads in the 22 Yorkshire Ouse catchment (UK), Hydrology and Earth System Sciences, 6(2), 197-209. 

  3. Bouraoui, F., Grizzetti, B., Granlund, K., Rekolainen, S., and Bidoglio, G. (2004). Impact of climate change on the water cycle and nutrient losses in a finnish catchment, Climatic Change, 66, 109-126. 

  4. Boyce, D. G., Lewis, M. R., and Worm, B. (2010). Global phytoplankton decline over the past century, Nature, 466(29), 591-596. 

  5. Butcher, J. B., Nover, D., Johnson, T. E., and lark, C. M. (2015). Sensitivity of lake thermal and mixing dynamics to climate change, Climatic Change, 129, 295-305. 

  6. Carter, T., Hulme, M., and Lal, M. (1999). IPCC-TGCIA Guidelines on the use of scenario data for climate impact and adaptation assessment, version 1. IPCC, task group on scenarios for impact assessment. 

  7. Chapra, S. C., Boehlert, B., Fant, C., Jr. Bierman. V. J., Henderson, J., Mills, D., Mas, D. M. L., Rennels, L., Jantarasami, L., Martinich, J., Strzepek, K. M., and Paerl, H. W. (2017). Climate change impacts on harmful algal blooms in U.S. fresh waters: a screening-level assessment, Environmental Science and Technology, 51(16), 8933-8943. 

  8. Elliott, J. A. (2010). The seasonal sensitivity of cyanobacteria and other phytoplankton to changes in flushing rate and water temperature, Global Change Biology, 16(2), 864-876. 

  9. Fang, X. and Stefan, H. G. (2009). Simulations of climate effects on water temperature, dissolved oxygen, and ice and snow covers in lakes of the contiguous US under past and future climate scenarios, Limnology and Oceanography, 54(2), 2359-2370. 

  10. Giorgi, F., Coppola, E., Solmon, F., Mariotti, L., Sylla, M. B., Bi, X., Elguindi, N., Diro, G. T., Nair, V., Giuliani, G., Turuncoglu, U. U., Cozzini, S., Guttler, I., O'Brien, T. A., Tawfik, A. B., Shalaby, A., Zakey, A. S., Steiner, A. L., Stordal, F., Sloan, L. C., and Brankovic, C. (2012). RegCM4: model description and preliminary tests over multiple CORDEX domains, Climate Research, 52, 7-29. 

  11. Han, K. Y., Kim, D. I., Hwangbo, H., and Jung, J. H. (2010). The effect of climate change on water quality, Korea Water Resources Association Conference, 938-942. [Korean Literature] 

  12. Intergovernmental Panel on Climate Change (IPCC). (2001). Climate Change, 2001, Intergovernmental Panel on Climate Change. 

  13. Intergovernmental Panel on Climate Change (IPCC). (2007). Climate Change, 2007, Intergovernmental Panel on Climate Change. 

  14. Intergovernmental Panel on Climate Change (IPCC). (2013). Climate Change, 2013, Intergovernmental Panel on Climate Change. 

  15. Juang, H. M. H., Hong, S. Y., and Kanamitsu, M. (1997). The NCEP regional spectral model: An update, Bulletin of the American Meteorological Society, 78, 2125-2143. 

  16. Jung, I. W., Bae, D. H., and Kim, G. (2011). Recent trends of mean and extreme precipitation in Korea, International Journal of Climatology, 31(3), 359-370. 

  17. Jung, J. H., Kim, D. I., Choi, H. G., and Han, K. Y. (2011). The effect of climate change on water quality analysis in a dam river basin, Journal of Environmental Impact Assessment, 20(2), 107-121. [Korean Literature] 

  18. Kang, H. S., Cha, D. H., and Lee, D. K. (2005). Evaluation of the mesoscale model/land surface model (MM5LSM) coupled model for East Asian summer monsoon simulations, Journal of Geophysical Research: Atmospheres, 110(D10105), 1-18. 

  19. Kim, M. C., Kim, J. H., and Seo, G. T. (2014). Removal improvement in water treatment plant for occurrence of diatoms (Synedra sp.) in the Nakdong river, Journal of Korean Society and Environmental Engineering, 36(1), 29-34. [Korean Literature] 

  20. Klapper, H. (1991). Control of eutrophication in Inland waters, Ellis Horwood Ltd., West Sussex, UK. 

  21. Komatsu, E., Fukushima, T., and Harasawa, H. (2007). A modeling approach to forecast the effect of long-term climate change on lake water quality, Ecological Modelling, 209(4), 351-366. 

  22. Korea Meteorological Administration (KMA). (2021a). Climate Information Portal, http://www.climate.go.kr (accessed Jun. 2021). [Korean Literature] 

  23. Korea Meteorological Administration (KMA). (2021b). Open MET Data Porta, https://data.kma.go.kr (accessed Jun. 2021). [Korean Literature] 

  24. Kraemer, B. M., Aneville, O., Chandra, S., Dix, S., Kuusisto, E., Livingstone, D. M., Rimmer, A., Schadow, S. G., Silow, E., Sitoki, L. M., Tamatamah, R., Vadeboncoeur, Y., and Mclntyre, P. (2015). Morphometry and average temperature affect lake stratification responses to climate change, Geophysical Research Letters, 42, 4981-4988. 

  25. Lee, D. Y., Jun, B. H., and Noh, S. G. (2019). Development of rating curve using water temperature at vegetation shifted station, Journal of Korea Water Resources Association, 77-81. [Korean Literature] 

  26. Ministry of Economy and Finance (MOEF). (2020). Korea's g reen new deal, Ministry of Economy and Finance. [Korean Literature] 

  27. Ministry of Environment (ME). (2020). Korean climate change assessment report, Ministry of Environment. [Korean Literature] 

  28. Morrill, J. C., Bales, R. C., and Conklin, M. H. (2005). Estimating steam temperature from air temperature: implications for future water quality, Journal of Environmental Engineering, 131, 139-146. 

  29. Murdoch, P. S., Baron, J. S., and Miller, T. L. (2000). Potential effects of climate change on surface-water quality in North America, Journal of the American Water Resources Association, 36, 347-366. 

  30. National Institute of Environmental Research (NIER). (2021). Water Environment Information System, http://water.nier.go.kr (accessed Jun. 2021). [Korean Literature] 

  31. Paerl, H. W. and Paul, V. J. (2012). Climate change: links to global expansion of harmful Cyanobacteria, Water Research, 46(5), 1349-1363. 

  32. Park, H. K. (2007). Survey method relating freshwater phytoplankton for the management of water resources, Journal of Korean Society of Environmental Engineers, 29(6), 593-609. [Korean Literature] 

  33. Park, H. S. and Chung, S. W. (2018). pCO 2 dynamics of stratified reservoir in temperate zone and CO 2 pulse emissions during turnover events, Water, 10(10), 1347. 

  34. Park, J. Y., Park, M. J., Ahn, S. R., and Kim, S. J. (2009). Watershed modeling for assessing climate change impact on stream water quality of Chungju dam watershed, Journal of Korea Water Resources Association, 42(10), 877-889. [Korean Literature] 

  35. Pilgrim, J. M., Fang, X., and Stefan, H. G. (1998). Stream temperature correlations with air temperatures in Minnesota: implications for climate warning, Journal of the American Water Resources Association, 34, 1109-1121. 

  36. Sahoo, G. and Schladow, S. (2014). Estimation of heat and hydrologic budget of upper Klamath Lake Oregon, USA using updated DLM-WQ model, European Water Resources Association (EWRA), 28(5), 1395-1414. 

  37. Sahoo, G. B., Schladow, S. G., Reuter, J. E., and Coats, R. (2011). Effects of climate change on thermal properties of lakes and reservoirs, and possible implications, Environmental Research and Risk Assessment, 25, 445-456. 

  38. Shin, C. M., Na, E. H., Kim, D. G., and Kim, K. (2014). Operational water temperature forecast for the Nakdong River Basin using HSPF watershed model, Journal of Korean Society on Water Environment, 30(6), 673-682. [Korean Literature] 

  39. Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Wang, W., and Powers, J. G. (2005). A description of the advanced research WRF version 2. (No. NCAR/TN468+STR), National Center for Atmospheric Research, Boulder, CO., 100. 

  40. Son, M., Chung, H. S., Park, C. H., ParkJ. H., Lim, C., and Kim, K. (2018). The change of phytoplankton community structure and water quality in the Juksan weir of the Yeongsan river watershed, Korean Journal of Environmental Biology, 36(4), 591-600. [Korean Literature] 

  41. Stefan, H. G. and Preud'homme, E. B. (2007). Stream temperature estimation from air temperature, Journal of the American Water Resources Association, 29(1), 27-45. 

  42. Stefan, H. G. and Sinokrot, B. A. (1993). Projected global climate change impact on water temperatures in five north central US streams, Climatic Change, 24, 353-381. 

  43. Stockle, C. O., Dyke, P. T., Williams, J. R., Jones, C. A., and Rosenberg, N. J. (1992). A method for estimating the direct and climatic effects of rising atmospheric carbon dioxide on growth and yield of crops: Part II-sensitivity analysis at three sites in the Midwestern USA, Agricultural Systems, 38, 239-256. 

  44. Theurer, F. D., Voos, K. A., and Miller. W. J. (1984). Instream water temperature model. In stream flow information paper 16, Fish and Wildlife Service. FWS/OBS-85/15. 

  45. United States Environmental Protection Agency (U. S. EPA). (2001). Temperature interaction, EPA/600/3-89/037. 

  46. Whitehead, P. G., Wade, A. J., and Butterfield, D. (2008). Potential impacts of climate change on water quality in six UK rivers, BHS 10th National Hydrology Symposium, Exeter. 

  47. Xia, X. H., Wu, Q., Mou, X. L., and Lai, Y. J. (2014). Potential impacts of climate change on the water quality of different water bodies, Journal of Environmental Informatics, 25(2), 85-98. 

  48. Yi, H. S., Kim, D. S., Hwang, M. H., and An, K. G. (2016). Assessment of runoff and water temperature variations under RCP climate change scenario in Yongdam dam watershed, South Korea, Journal of Korean Society on Water Environment, 32(2), 173-182. [Korean Literature] 

  49. Yu, J. J., Lee, H. J., Lee, K. L., Lyu, H. S., Whang, J. W., Shin, L. Y., and Chen, S. U. (2014). Relationship between distribution of the dominant phytoplankton species and water temperature in the Nakdong river, Korea, Korean Journal of Ecology and Environment, 47(4), 247-257. [Korean Literature] 

  50. Yun, J. J. (2016). A study on climate change adaptation in the coastal area of Chungcheongnam-do, ChungNam Institute. [Korean Literature] 

  51. Yun, Y., Park, H., and Chung, S. (2019). Projection of water temperature and stratification strength with climate change in Soyanggang reservoir in South Korea, Journal of Korean Society on Water Environment, 35(3), 234-247. [Korean Literature] 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로