$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

호수 내 화쇄밀도류의 퇴적과정: 밀양시 단장면 일원 백악기 정각산층의 예
Depositional Processes of Pyroclastic Density Currents in Lacustrine Environments: An Example from the Cretaceous Jeonggaksan Formation in Danjang-myeon, Miryang City 원문보기

자원환경지질 = Economic and environmental geology, v.55 no.3, 2022년, pp.295 - 307  

김용식 (경북대학교 지질학과) ,  박승익 (경북대학교 지질학과)

초록
AI-Helper 아이콘AI-Helper

호수 내 화쇄밀도류의 퇴적과정을 이해하기 위하여 밀양시 단장면에 분포하는 백악기 정각산층에 대해 퇴적학적 연구를 수행하였다. 연구지역의 정각산층은 호수에서 형성된 이암-사암 호층 및 (응회질)점이층리 사암으로 주로 구성되며, 이들 퇴적암은 화쇄밀도류에 의해 형성된 용결화산력응회암 및 점이층리 화산력응회암과 교호하고 있다. 두께가 10 m인 용결화산력응회암은 분급이 불량하고 괴상인 화산력과 화산재로 구성되며 용결구조가 발달한다. 점이층리 화산력응회암은 약 4 m의 두께로 분급이 보통이거나 양호하며, 층의 하부에 수매의 점이층리 구간이 내부경계면과 함께 나타난다. 상이한 퇴적상을 보이는 화산력응회암은 호수로 유입된 화쇄밀도류의 물리적 특성 및 퇴적과정에 차이가 있음을 의미한다. 약 10 m에 걸쳐 괴상이며 분급이 불량한 특징은 용결응회암이 고농도의 화쇄밀도류에 의해 지속적으로 퇴적되었음을 지시한다. 이 경우, 화쇄밀도류의 전면부는 호안에서부터 물을 지속적으로 밀어내어 화쇄밀도류의 전면부를 제외하고는 물과 직접 접촉하지 않아 열을 보존할 수 있어 용결조직이 형성된 것으로 해석된다. 이와 달리 점이층리 화산력응회암의 내부경계면은 점이층리 화산력응회암을 퇴적시킨 화쇄밀도류가 비지속성흐름을 보였음을 지시하며, 이 경우 호안에서 물을 지속적으로 밀어낼 수 없게 된다. 그 결과, 호수로 유입된 화쇄밀도류는 빠르게 물에 의해 포화되어 저탁류로 변화하여 점이층리 화산력응회암이 형성되었다.

Abstract AI-Helper 아이콘AI-Helper

We studied the Cretaceous Jeonggaksan Formation to determine depositional processes of pyroclastic density currents entering into the lacustrine environments. This formation is composed largely of sandstone-mudstone couplets and (tuffaceous) normally graded sandstones deposited in lacustrine environ...

주제어

참고문헌 (58)

  1. Allen, P.A. and Allen, J.R. (2013) Basin Analysis: Principles and Application to Petroleum Play Assessment. 3rd (ed.), Wiley-Blackwell, Oxford, 619p. 

  2. Allen, S.R., Freundt, A. and Kurokawa, K. (2012) Characteristics of submarine pumice-rich density current deposits sourced from turbulent mixing of subaerial pyroclastic flows at the shoreline: field and experimental assessment. Bull. Volcanol., v.74, p.657-675. doi: 10.1007/s00445-011-0553-1. 

  3. Anderson, R.Y. and Dean, W.E., (1988) Lacustrine varve formation through time. Palaeogeogr. Palaeoclimatol. Palaeoecol., v.62, p.215-235. doi: 10.1016/0031-0182(88)90055-7. 

  4. Aoki, K., Isozaki, Y., Kofukuda, D., Sato, T., Yamamoto, A., Maki, K., Sakata, S. and Hirata, T. (2014) Provenance diversification within an arc-trench system induced by batholith development: The Cretaceous Japan case. Terra Nova, v.26, p.139-149. doi: 10.1111/ter.12080. 

  5. Branney, M.J. and Kokelaar, B.P. (2002) Pyroclastic density currents and the sedimentation of ignimbrites. Geol. Soc. Lond. Mem. 27, Geological Society of London, London, 152p. 

  6. Brown, R.J., Bonadonna, C. and Durant, A.J. (2012) A review of volcanic ash aggregation. Phys. Chem. Earth, v.45-46, p.65-78. doi: 10.1016/j.pce.2011.11.001. 

  7. Brown, R.J., Branney, M.J., Maher, C. and Davila-Harris, P. (2010) Origin of accretionary lapilli within ground-hugging density currents: evidence from pyroclastic couplets on Tenerife. Geol. Soc. Am. Bull., v.122, p.305-320, doi: 10.1130/B26449.1. 

  8. Bursik, M.I. and Woods, A.W. (1996) The dynamics and thermodynamics of large ash flows. Bull. Volcanol., v.58, p.175-193. doi: 10.1007/s004450050134. 

  9. Carey, S., Sigurdsson, H., Mandeville, C. and Bronto, S. (1996) Pyroclastic flows and surges over water: An example from the 1883 Krakatau eruption. Bull. Volcanol., v.57, p.493-511. doi: 10.1007/BF00304435. 

  10. Cas, R.A.F. and Wright, J.V. (1991) Subaqueous pyroclastic flows and ignimbrites: An assessment. Bull. Volcanol., v.53, p.357-380. doi: 10.1007/BF00280227. 

  11. Chang, K.H. (1977) Late Mesozoic stratigraphy, sedimentation and tectonics of southeastern Korea. J. Geol. Soc. Korea, v.13, p.76-90. 

  12. Choi, S.J., Kim Y.B. and Gihm, Y.S. (2016) Geological report of the Bungye, Jaeundo, Bigeumdo, and Gihwado Sheets (1:50,000). Korea Institute of Geoscience and Mineralogy Resources. Daejeon, Korea, p.69 (in Korean with English abstract). 

  13. Chough, S.K. and Sohn, Y.K. (2010) Tectonic and sedimentary evolution of a Cretaceous continental arc-backarc system in the Korean peninsula: New view. Earth-Sci. Rev., v.101, p.225-249. doi: 10.1016/j.earscirev.2010.05.004. 

  14. Di Capua, A. and Groppelli, G. (2016) Emplacement of pyroclastic density currents (PDCs) in a deep-sea environment: The Val d'Aveto Formation case (Northern Apennines, Italy). J. Volcanol. Geoth. Res., v.328, p.1-8. doi: 10.1016/j.jvolgeores.2016.08.003. 

  15. Di Capua, A., Barilaro, F., Szepesi, J., Lukacs, R., Gal, P., Norini, G., Sulpizio, R., Soos, I., Harangi, S. and Groppelli, G. (2021) Correlating volcanic dynamics and the construction of a submarine volcanogenic apron: An example from the Badenian (Middle Miocene) of North-Eastern Hungary. Mar. Petrol. Geol., v.126, 104944. doi: 10.1016/j.marpetgeo.2021.104944. 

  16. Druitt, T.H. (1995) Settling behaviour of concentrated dispersions and some volcanological applications. J. Volcanol. Geotherm. Res., v.65, p.27-39. doi: 10.1016/0377-0273(94)00090-4. 

  17. Druitt, T.H. (1998) Pyroclastic density currents. In Gilbert, J.S. and Sparks, R.S.J. (eds.), The Physics of Explosive Volcanic Eruptions, Geol. Soc. Lond. Spec. Publ., v.145, p.145-182. doi: 10.1144/GSL.SP.1996.145.01.08. 

  18. Edmonds, M. and Herd, R.A. (2005) Inland-directed base surge generated by the explosive interaction of pyroclastic flows and seawater at Soufriere Hills Volcano, Montserrat. Geology, v.33, p.245-248. doi: 10.1130/G21166.1. 

  19. Freundt, A. (2003) Entrance of hot pyroclastic flows into the sea: experimental observations. Bull. Volcanol., v.65, p.144-164. doi: 10.1007/s00445-002-0250-1. 

  20. Freundt, A., Schindlbeck-Belo, J.C., Kutterolf, S. and Hopkins, J.L. (in press) Tephra layers in the marine environment: A review of properties and emplacement processes. In Di Capua, A., De Rosa, R., Kereszturi, G., Le Pera, E., Rosi, M. and Watt, S.F.L. (eds.) Volcanic Processes in the Sedimentary Record: When Volcanoes Meet the Environment. Geol. Soc. Lond. Spec. Publ., v.520. doi: 10.1144/SP520-2021-50. 

  21. Gihm, Y.S. and Hwang, I.G. (2014) Syneruptive and intereruptive lithofacies in lacustrine environments: the Cretaceous Beolkeum member, Wido Island, Korea. J. Volcanol. Geotherm. Res., v.273, p.15-32. doi: 10.1016/j.jvolgeores.2014.01.004. 

  22. Ghim, Y.S., Ko, K. and Lee, B.C. (2020) Occurrence of the lowermost part of the Yucheon Group and its SHRIMP U-Pb ages in Hyeonpoong and Bugok areas. Econ. Environ. Geol., v.53, p.397-411. doi: 10.9719/EEG.2020.53.4.397. 

  23. Gilbert, J.S. and Lane, S.J. (1994) The origin of accretionary lapilli. Bull. Volcanol., v.56, p.398-411. doi: 10.1007/BF00326465. 

  24. Gim, J-H., Jeong, J-O., Gihm, Y.S., Gu, H-C. and Sohn, Y.K. (2016) Depositional environments and processes of the subsurface dacitic volcaniclastic deposits in the Miocene Janggi Basin, SE Korea. J. Geol. Soc. Korea, v.52, p.775-798 (in Korean with English abstract). doi: 10.14770/jgsk.2016.52.6.775. 

  25. Hong, S. H. and Choi, P-Y. (1988) Geological report of the Yuchon sheets (1:50,000). Korea Institute of Energy and Resources, Seoul, Korea. p.26 (in Korean with English abstract). 

  26. Hwang, S.K., Kim, S.W., Kim, S.K., Ahn, U.S., Jo, I.H., Lee, S.J. and Kim, J.J. (2019) Chronostratigraphic implication of the Yucheon Group in Gyeongsang Basin, Korea. J. Geol. Soc. Korea, v.55, p.633-647 (in Korean with English abstract). doi: 10.14770/jgsk.2019.55.5.633. 

  27. Kim, K.B. and Hwang, S.K. (1988) Geological report of the Miryang sheets (1:50,000). Korea Institute of Energy and Resources, Seoul, Korea. p.26 (in Korean with English abstract). 

  28. Kim, S.B., Chough, S.K. and Chun, S.S. (2003) Tectonic controls on spatio-temporal development of depositional systems and generation of fining-upward basin fills in a strike-slip setting: Kyokpori Formation (Cretaceous), south-west Korea. Sedimentology, v.50, p.639-665. doi: 10.1046/j.1365-3091.2003.00568.x. 

  29. Kim, S.W., Kwon, S., Park, S.-I., Lee, C., Cho, D.-L., Lee, H.-J., Ko, K. and Kim, S.J. (2016) SHRIMP U-Pb dating and geochemistry of the Cretaceous plutonic rocks in the Korean Peninsula: A new tectonic model of the Cretaceous Korea Peninsula. Lithos, v.262, p.88-106. doi: 10.1016/j.lithos.2016.06.027. 

  30. Kim, S.W., Kwon, S., Ryu, I.-C., Jeong, Y.-J., Choi, S.-J., Kee, W.-S., Yi, K., Lee, Y.S., Kim, B.C. and Park, D.W. (2012) Characteristics of the Early Cretaceous Igneous activity in the Korean Peninsula and Tectonic Implications. J. Geol., v.120, p.625-646. doi: 10.1086/667811. 

  31. Kneller, B.C. (1995) Beyond the turbidite paradigm: Physical models for deposition of turbidites and their implications for reservoir prediction. In Hartley, A.J. and Prosser, D.J. (eds.), Characteristics of Deep Marine Clastic Systems. Geol. Soc. Lond. Spec. Publ., v.94 p.31-49. doi: 10.1144/GSL.SP.1995.094.01.04. 

  32. Kneller, B.C. and Branney, M.J. (1995) Sustained high-density turbidity currents and the deposition of thick massive sands. Sedimentology, v.42, p.607-616. doi: 10.1111/j.1365-3091.1995.tb00395.x. 

  33. Koh, H.J., Kwon, C.W., Park, S.-I., Park, J. and Kee, W.-S. (2013) Geological report of the Julpo, Wido, and Hawangdeungdo sheets (1:50,000). Korea Institute of Geoscience and Mineralogy Resources, Daejeon, Korea. p.81 (in Korean with English abstract). 

  34. Kokelaar, B.P. and Koniger, S. (2000) Marine emplacement of welded ignimbrite: The Ordovician Pitts Head Tuff, North Wales. J. Geol. Soc., v.157, p.517-536. doi: 10.1144/jgs.157.3.517. 

  35. Kokelaar, B.P., Raine, P. and Branney, M.J. (2007) Incursion of a large-volume, spatter-bearing pyroclastic density current into a caldera lake: Pavey Ark ignimbrite, Scafell caldera, England. Bull. Volcanol., v.70, p.23-54. doi: 10.1007/s00445-007-0118-5. 

  36. Kwon, C.W., Ko, K. and Koh, H.J., (2015) Geological report of the Beopseongpo, Anmado, Songido, Bunamgundo, and Imjado Sheets (1:50,000). Korea Institute of Geoscience and Mineralogy Resources. Daejeon, Korea, p.57 (in Korean with English abstract). 

  37. Lee, D.W. (1999) Strike-slip fault tectonics and basin formation during the Cretaceous in the Korean Peninsula. Isl. Arc, v.8, p.218-231. doi: 10.1046/j.1440-1738.1999.00233.x. 

  38. Lee, S.H. and Chough, S.K. (1999) Progressive changes in sedimentary facies and stratal patterns along the strike-slip margin, northeastern Jinan Basin (Cretaceous), southwest Korea: Implications for differential subsidence. Sediment. Geol., v.123, p.81-102. doi: 10.1016/S0037-0738(98)00087-6. 

  39. Legros, F. and Druitt, T.H. (2000) On the emplacement of ignimbrite in shallow-marine environments. J. Volcanol. Geotherm. Res., v.95, p.9-22. doi: 10.1016/S0377-0273(99)00116-X. 

  40. Li, J., Zhang, Y., Dong, S. and Johnston, S.T. (2014) Cretaceous tectonic evolution of South China: A preliminary synthesis. Earth-Sci. Rev., v.134, p.98-136. doi: 10.1016/j.earscirev.2014.03.008. 

  41. Mandeville, C.W., Carey, S. and Sigurdsson, H. (1996) Sedimentology of the Krakatau 1883 submarine pyroclastic deposits. Bull. Volcanol., v.57, p.512-529. doi: 10.1007/BF00304436. 

  42. McPhie, J., Doyle, M. and Allen, R. (1993) Volcanic Textures: A Guide to the Interpretation of Textures in Volcanic Rocks. University of Tasmania, Hobart, p.198. 

  43. Owen, G., Moretti, M. and Alfaro, P. (2011) Recognising triggers for soft-sediment deformation: Current understanding and future directions. Sediment. Geol. v.235, p.133-140. doi: 10.1016/j.sedgeo.2010.12.010. 

  44. Renaut, R.W. and Gierlowski-Kordesch, E.H. (2010) Lakes. In James, N. and Dalrymple, R. (eds.), Facies Models. Geol. Ass. Can., Toronto, p.541-575. 

  45. Ryang, W.H. and Chough, S.K. (1997) Sequential development of alluvial/lacustrine system; southeastern Eumsung Basin (Cretaceous), Korea. J. Sediment. Res., v.67, p.274-285. doi: 10.1306/D426854F-2B26-11D7-8648000102C1865D. 

  46. Schumacher, R. and Schmincke, H.U. (1995) Models for the origin of accretionary lapilli. Bull. Volcanol., v.56, p.626-639. doi: 10.1007/BF00301467. 

  47. Sohn, Y.K. (1997) On traction-carpet sedimentation. J. Sediment. Res., v.67, p.502-509. doi: 10.1306/D42685AE-2B26-11D7-8648000102C1865D. 

  48. Sohn, Y.K. and Chough, S.K. (1989) Depositional processes of the Suwolbong tuff ring, Cheju Island (Korea). Sedimentology, v.36, p.837-855. doi: 10.1111/j.1365-3091.1989.tb01749.x. 

  49. Sturm, M. and Matter, A. (1978) Turbidites and Varves in Lake Brienz (Switzerland): Deposition of Clastic Detritus by Density Currents. In Matter, A. and Tucker, M.E., Modern and Ancient Lake Sediments. Spec. Publ. Int. Assoc. Sediment., Blackwell Science, Oxford, v.2. p.147-168. doi: 10.1002/9781444303698.ch8. 

  50. Talling, P.J., Masson, D.G., Sumner, E.J. and Malgesini, G. (2012) Subaqueous sediment density flows: Depositional processes and deposit types. Sedimentology, v.59, p.1937-2003. doi: 10.1111/j.1365-3091.2012.01353.x. 

  51. Trofimovs, J., Sparks, R.S.J. and Talling, P.J. (2008) Anatomy of a submarine pyroclastic flow and associated turbidity current: July 2003 dome collapse, Soufriere Hills volcano, Montserrat, West Indies. Sedimentology, v.55, p.617-634. doi: 10.1111/j.1365-3091.2007.00914.x. 

  52. Trofimovs, J., Amy, L., Boudon, G., Deplus, C., Doyle, E., Fournier, N., Hart, M.B., Komorowski, J.C., Le Friant, A., Lock, E.J., Pudsey, C., Ryan, G., Sparks, R.S.J. and Talling, P.J. (2006) Submarine pyroclastic deposits formed at the Soufriere Hills volcano, Montserrat (1995-2003): what happens when pyroclastic flows enter the ocean? Geology, v.34, p.549-552. doi: 10.1130/G22424.1. 

  53. Van Eaton, A.R., Muirhead, J.D., Wilson, C.J.N. and Cimarelli, C. (2012) Growth of volcanic ash aggregates in the presence of liquid water and ice: An experimental approach. Bull. Volcanol., v.74, p.1963-1984. doi: 10.1007/s00445-012-0634-9. 

  54. Wang, Q., Li, X.-H., Jia, X.-H., Wyman, D., Tang, G.-J., Li, Z.-X., Ma, L., Yang, Y.-H., Jiang, Z.-Q. and Gou, G.-N. (2012) Late Early Cretaceous adakitic granitoids and associated magnesian and potassium-rich mafic enclaves and dikes in the Tunchang-Fengmu area, Hainan Province (South China): Partial melting of lower crust and mantle, and magma hybridization. Chem. Geol., v.328, p.222-243. doi: 10.1016/j.chemgeo.2012.04.029. 

  55. White, J.D.L. (2000) Subaqueous eruption-fed density currents and their deposits. Precambrian Res. v.101, p.87-109. doi: 10.1016/S0301-9268(99)00096-0. 

  56. White, J.D.L. and Houghton, B.F. (2006) Primary volcaniclastic rocks. Geology, v.34, p.677-680. doi: 10.1130/G22346.1. 

  57. White, M.J. and McPhie, J. (1997) A submarine welded ignimbrite-crystal-rich sandstone facies association in the Cambrian Tyndall Group, western Tasmania, Australia. J. Volcanol. Geotherm. Res., v.76, p.277-295. doi: 10.1016/S0377-0273(96)00105-9. 

  58. Zhang, Y.-B., Zhai, M., Hou, Q.-L., Li, T.-S., Liu, F. and Hu, B. (2012) Late Cretaceous Volcanic rocks and associated granites in Gyeongsang Basin, SE Korea: Their chronological ages and tectonic implications for cratonic destruction of the North China Craton. J. Asian Earth Sci., v.47, p.252-264. doi: 10.1016/j.jseaes.2011.12.011. 

저자의 다른 논문 :

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로