$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

토마토황화잎말림바이러스병에 대한 저항성 품종과 항바이러스 활성 물질 3종의 효과 검증
Efficacy of Three Antiviral Agents and Resistant Cultivars on Tomato Yellow Leaf Curl Virus in Tomato 원문보기

Research in plant disease = 식물병연구, v.28 no.2, 2022년, pp.82 - 91  

권용남 (광주시농업기술센터) ,  차병진 (충북대학교식물의학과) ,  김미경 (충북대학교식물의학과)

초록
AI-Helper 아이콘AI-Helper

최근에는 작물의 유도 저항성을 이용한 항바이러스제 개발에 관한 많은 연구가 수행되고 있으나 실제 농업현장에 널리 보급되지 못하고 있는 실정이다. 본 실험은 시설토마토 재배현장에 외생 살리실산, 키토산, 유제놀 처리에 따른 토마토황화잎말림바이러스(Tomato yellow leaf curl virus, TYLCV) 감염억제효과를 검증하고자 수행되었다. 실내검정에서 TYLCV에 감수성 품종인 '슈퍼도태랑'은 항바이러스제 처리 후 TYLCV에 감염된지 12일 후 VP (virus infected control plants)에서 바이러스 증상이 나타나기 시작했다. 접종 32일 후 TYLCV 발병도는 VP에서 98.8%였고, SAT (2 mM salicylic acid)+VP, EGT (200 ㎍/ml eugenol)+VP에서는 각각 98.8%, 98.7%로 발병도가 높았으나, CHT (0.1% chitosan)+VP는 85.7%로 다른 처리들과 통계적으로 유의한 차이를 보였다. 그러나 TYLCV 농도는 CHT+VP에서 OD값이 0.3으로 오히려 가장 높게 나타났으며, 토마토의 초장, 지상부 및 지하부 생체중에서도 뚜렷한 효과를 보이지 않았다. 여름작형 시설재배지에서 도태랑 계열의 토마토품종 '도태랑솔라'를 사용하여 항바이러스 3종의 효과를 조사한 결과, 수확기에 모든 처리구에서 100.0%에 가까운 TYLCV 감염률은 나타냈으며, 수확량에도 처리간의 통계적 유의차가 인정되지는 않았다. 이와 대조적으로 Ty-1과 Ty-3a 유전자를 보유한 TYLCV에 내병성 품종인 'TY자이언츠'는 저항성 유묘검정의 전 조사기간 동안 바이러스 증상이 전혀 관찰되지 않았고, 식물체내 바이러스 농도도 무접종 수준이었다. 본 실험 결과 'TY자이언츠' 품종은 TYLCV 발생이 만연한 지역 및 재배시기에 감수성 품종을 대체할 수 있을 것으로 생각된다. 반면, 저항성 유도물질인 살리실산, 유제놀, 키토산의 항바이러스 효과는 입증되지 않았기 때문에, 아직 시설토마토 재배현장에 적용하기는 어려울 것으로 판단된다.

Abstract AI-Helper 아이콘AI-Helper

Recently, several in vitro studies have reported antiviral activity of agents of systemic acquired resistance against plant virus infection, but the approach has not been applied in a wide range of agricultural fields. The objective of this study was to evaluate the inhibitory effect of the exogenou...

주제어

표/그림 (7)

참고문헌 (65)

  1. Abd El-Gawad, H. G. and Bondok, A. M. 2015. Response of tomato plants to salicylic acid and chitosan under infection with Tomato mosaic virus. Am. Euras. J. Agric. Environ. Sci. 15: 1520-1529. 

  2. Anfoka, G., Moshe, A., Fridman, L., Amrani, L., Rotem, O., Kolot, M. et al. 2016. Tomato yellow leaf curl virus infection mitigates the heat stress response of plants grown at high temperatures. Sci. Rep. 6: 19715. 

  3. Brown, J. K., Zerbini, F. M., Navas-Castillo, J., Moriones, E., Ramos-Sobrinho, R., Silva, J. C. et al. 2015. Revision of Begomovirus taxonomy based on pairwise sequence comparisons. Arch. Virol. 160: 1593-1619. 

  4. Butterbach, P., Verlaan, M. G., Dullemans, A., Lohuis, D., Visser, R. G., Bai, Y. et al. 2014. Tomato yellow leaf curl virus resistance by Ty-1 involves increased cytosine methylation of viral genomes and is compromised by cucumber mosaic virus infection. Proc. Natl. Acad. Sci. U. S. A. 111: 12942-12947. 

  5. Calil, I. P. and Fontes, E. P. B. 2017. Plant immunity against viruses: antiviral immune receptors in focus. Ann. Bot. 119: 711-723. 

  6. Choi, S. K., Choi, H. S., Yang, E. Y., Cho, I. S., Cho, J. D. and Chung, B. N. 2013. Construction of Tomato yellow leaf curl virus clones for resistance assessment in tomato plants. Korean J. Hortic. Sci. Technol. 31: 246-254. (In Korean) 

  7. Cohen, S. and Harpaz, I. 1964. Periodic, rather than continual acquisition of a new tomato virus by its vector, the tobacco whitefly (Bemisia tabaci Gennadius). Entomol. Exp. Appl. 7: 155-166. 

  8. Cohen, S. and Lapidot, M. 2007. Appearance and expansion of TYLCV: a historical point of view. In: Tomato yellow leaf curl virus Disease: Management, Molecular Biology, Breeding for Resistance, ed. by H. Czosnek, pp. 3-12. Springer, Dordrecht, The Netherlands. 

  9. Corrales-Gutierrez, M., Medina-Puche, L., Yu, Y., Wang, L., Ding, X., Luna, A. P. et al. 2020. The C4 protein from the geminivirus Tomato yellow leaf curl virus confers drought tolerance in Arabidopsis through an ABA-independent mechanism. Plant Biotechnol. J. 18: 1121-1123. 

  10. Doares, S. H., Syrovets, T., Weiler, E. W. and Ryan, C. A. 1995. Oligogalacturonides and chitosan activate plant defensive genes through the octadecanoid pathway. Proc. Natl. Acad. Sci. U. S. A. 92: 4095-4098. 

  11. Esmailzadeh, M., Soleimani, M. J. and Rouhani, H. 2008. Exogenous applications of salicylic acid for inducing systematic acquired resistance against tomato stem canker disease. J. Biol. Sci. 8: 1039-1044. 

  12. Faoro, F. and Gozzo, F. 2015. Is modulating virus virulence by induced systemic resistance realistic? Plant Sci. 234: 1-13. 

  13. Fauquet, C. M., Briddon, R. W., Brown, J. K., Moriones, E., Stanley, J., Zerbini, M. et al. 2008. Geminivirus strain demarcation and nomenclature. Arch. Virol. 153: 783-821. 

  14. Huot, B., Yao, J., Montgomery, B. L. and He, S. Y. 2014. Growth-defense tradeoffs in plants: a balancing act to optimize fitness. Mol. Plant. 7: 1267-1287. 

  15. Iftikhar, Y., Mubeen, M., Sajid, A., Zeshan, M. A., Shakeel, Q., Abbas, A. et al. 2021. Effects of tomato leaf curl virus on growth and yield parameters of tomato Crop. Arab J. Plant Prot. 39: 79-83. 

  16. Iriti, M. and Varoni, E. M. 2015. Chitosan-induced antiviral activity and innate immunity in plants. Environ. Sci. Pollut. Res. 22: 2935-2944. 

  17. Javaheri, M., Mashayekhi, K., Dadkhah, A. and Tavallaee, F. Z. 2012. Effects of salicylic acid on yield and quality characters of tomato fruit (Lycopersicum esculentum Mill.). Int. J. Agric. Crop Sci. 4: 1184-1187. 

  18. Ji, Y., Schuster, D. J. and Scott, J. W. 2007. Ty-3, a Begomovirus resistance locus near the Tomato yellow leaf curl virus resistance locus Ty-1 on chromosome 6 of tomato. Mol. Breed. 20: 271-284. 

  19. Jung, J., Kim, H. J., Lee, J. M., Oh, C. S., Lee, H.-J. and Yeam, I. 2015. Gene-based molecular marker system for multiple disease resistances in tomato against Tomato yellow leaf curl virus, late blight, and verticillium wilt. Euphytica 205: 599-613. 

  20. Karasov, T. L., Chae, E., Herman, J. J. and Bergelson, J. 2017. Mechanisms to mitigate the trade-off between growth and defense. Plant Cell 29: 666-680. 

  21. Khan, A., Kamran, M., Imran, M., Al-Harrasi, A., Al-Rawahi, A., Al-Amri, I. et al. 2019. Silicon and salicylic acid confer high-pH stress tolerance in tomato seedlings. Sci. Rep. 9: 19788. 

  22. Khan, M. I. R., Fatma, M., Per, T. S., Anjum, N. A. and Khan, N. A. 2015. Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Front. Plant Sci. 6: 462. 

  23. Kil, E.-J., Byun, H.-S., Kim, S., Kim, J., Park, J., Cho, S. et al. 2014. Sweet pepper confirmed as a reservoir host for Tomato yellow leaf curl virus by both agro-inoculation and whitefly-mediated inoculation. Arch. Virol. 159: 2387-2395. 

  24. Kim, C. S., Lee, K. S., Choi, H. S., Lee, K. Y., Lee, S. C., Kim, J. K. et al. 2012. Weed host for propagation of the Bemisia tabaci infected with TYLCV and its TYLCV infection. Korean J. Weed Sci. 32: 247-248. (In Korean) 

  25. Kim, H.-Y., Lee, Y.-H., Kim, J.-H. and Kim, Y.-H. 2008. Comparison on the capability of four predatory mites to prey on the eggs of Bemisia tabaci (Hemiptera: Aleyrodidae). Korean J. Appl. Entomol. 47: 429-433. (In Korean) 

  26. Kim, W.-I., Kim, K.-H., Kim, Y.-B., Lee, H.-S., Shon, G.-M. and Park, Y.- H. 2013. Selection and characterization of horticultural traits of Tomato leaf curl virus (TYLCV)-resistant tomato cultivars. Korean J. Hortic. Sci. Technol. 31: 328-336. (In Korean) 

  27. Koo, Y. M., Heo, A. Y. and Choi, H. W. 2020. Salicylic acid as a safe plant protector and growth regulator. Plant Pathol. J. 36: 1-10. 

  28. Kovacik, J., Gruz, J., Backor, M., Strnad, M. and Repcak, M. 2009. Salicylic acid-induced changes to growth and phenolic metabolism in Matricaria chamomilla plants. Plant Cell Rep. 28: 135-143. 

  29. Lapidot, M., Friedmann, M., Pilowsky, M., Ben-Joseph, R. and Cohen, S. 2001. Effect of host plant resistance to Tomato yellow leaf curl virus (TYLCV) on virus acquisition and transmission by its whitefly vector. Phytopathology 91: 1209-1213. 

  30. Lapidot, M., Paran, I., Ben-Joseph, R., Ben-Harush, S., Pilowsky, M., Cohen, S. et al. 1997. Tolerance to cucumber mosaic virus in pepper: development of advanced breeding lines and evaluation of virus level. Plant Dis. 81: 185-188. 

  31. Lee, M.-L., Ahn, S.-B. and Cho, W.-S. 2000. Morphological characteristics of Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae) and discrimination of their biotypes in Korea by DNA markers. Korean J. Appl. Entomol. 39: 5-12. (In Korean) 

  32. Lee, Y, J., Kim M, K., Choi, H. S., Kwak, H. R., Seo, J. G., Lee, J. S. et al. 2013. Primer set for multiple detection tomato viruses that transmitted by whiteflies, and method for detecting said viruses using the same. Korea Patent No. 10-2013-0140576. (In Korean) 

  33. Lee, Y.-S., Kim, J.-Y., Hong, S.-S., Park, J. and Park, H.-H. 2012. Occurrence of sweet-potato whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae) and its response to insecticide in Gyeonggi area. Korean J. Appl. Entomol. 51: 377-382. (In Korean) 

  34. Lefeuvre, P., Martin, D. P., Harkins, G., Lemey, P., Gray, A. J. A., Meredith, S. et al. 2010. The spread of Tomato yellow leaf curl virus from the Middle East to the world. PLoS Pathog. 6: e1001164. 

  35. Legarrea, S., Barman, A., Marchant, W., Diffie, S. and Srinivasan, R. 2015. Temporal effects of a Begomovirus infection and host plant resistance on the preference and development of an insect vector, Bemisia tabaci, and implications for epidemics. PLoS ONE 10: e0142114. 

  36. Li, T., Huang, Y., Xu, Z.-S., Wang, F. and Xiong, A.-S. 2019. Salicylic acid-induced differential resistance to the Tomato yellow leaf curl virus among resistant and susceptible tomato cultivars. BMC Plant Biol. 19: 173. 

  37. Li, Y., Muhammad, T., Wang, Y., Zhang, D., Crabbe, M. J. C. and Liang, Y. 2018. Salicylic acid collaborates with gene silencing to tomato defense against Tomato yellow leaf curl virus (TYLCV). Pak. J. Bot. 50: 2041-2054. 

  38. Li, Y., Qin, L., Zhao, J., Muhammad, T., Cao, H., Li, H. et al. 2017. SlMAPK3 enhances tolerance to Tomato yellow leaf curl virus (TYLCV) by regulating salicylic acid and jasmonic acid signaling in tomato (Solanum lycopersicum). PLoS ONE 12: e0172466. 

  39. Mishra, R., Shteinberg, M., Shkolnik, D., Anfoka, G., Czosnek, H. and Gorovits, R. 2022. Interplay between abiotic (drought) and biotic (virus) stresses in tomato plants. Mol. Plant Pathol. 22: 475-488. 

  40. Mishra, S., Jagadeesh, K. S., Krishnaraj, P. U. and Prem, S. 2014. Biocontrol of tomato leaf curl virus (ToLCV) in tomato with chitosan supplemented formulations of Pseudomonas sp. under field conditions s. Aust. J. Crop Sci. 8: 347-355. 

  41. Moriones, E. and Navas-Castillo, J. 2000. Tomato yellow leaf curl virus, an emerging virus complex causing epidemics worldwide. Virus Res. 71: 123-134. 

  42. Moriones, E., Navas-Castillo, J. and Diaz-Pendon, J. A. 2011. Emergence of Begomovirus diseases. In: Recent Advances in Plant Virology, eds. by C. Caranta, M. A. Aranda, M. Tepfer and J. J. Lopez-Moya, pp. 301-320. Caister Academic Press, Norfolk, UK. 

  43. Nakhla, M. K. and Maxwell, D. P. 1998. Epidemiology and management of tomato yellow leaf curl disease. In: Plant Virus Disease Control, eds. by A. Hadidi, R. K. Khetarpal and H. Koganezawa, pp. 565-583. APS Press, St. Paul, MN, USA. 

  44. Pasternak, T., Groot, E. P., Kazantsev, F. V., Teale, W., Omelyanchuk, N., Kovrizhnykh, V. et al. 2019. Salicylic acid affects root meristem patterning via auxin distribution in a concentration-dependent manner. Plant Physiol. 180: 1725-1739. 

  45. Polston, J. E. and Anderson, P. K. 1997. The emergence of whitefly-transmitted geminviruses in tomato in the western hemisphere. Plant Dis. 81: 1358-1369. 

  46. Pospieszny, H., Chirkov, S. and Atabekov, J. 1991. Induction of antiviral resistance in plants by chitosan. Plant Sci. 79: 63-68. 

  47. Pospieszny, H. 1997. Antiviroid activity of chitosan. Crop Prot. 16: 105-106. 

  48. Rashid, M. H., Hossain, I., Hannan, A., Uddin, S. A. and Hossain, M. A. 2008. Effect of different dates of planting time on prevalence of Tomato yellow leaf curl virus and whitefly of tomato. J. Soil Nat. 2: 1-6. 

  49. Rendina, N., Nuzzaci, M., Scopa, A., Cuypers, A. and Sofo, A. 2019. Chitosan-elicited defense responses in Cucumber mosaic virus (CMV)-infected tomato plants. J. Plant Physiol. 234-235: 9-17. 

  50. Rivas-San Vicente, M. and Plasencia, J. 2011. Salicylic acid beyond defence: its role in plant growth and development. J. Exp. Bot. 62: 3321-3338. 

  51. Ryals, J. A., Neuenschwander, U. H., Willits, M. G., Molina, A., Steiner, H. Y. and Hunt, M. D. 1996. Systemic acquired resistance. Plant Cell 8: 1809-1819. 

  52. Scott, J. W. 2007. Breeding for resistance to viral pathogens. In: Gentic Improvement of Solanaceous Crops, Vol. 2: Tomato, eds. by M. K. Razdan and A. K. Mattoo, pp. 457-485. CRC Press, Enfield, NH, USA. 

  53. Seo, J.-K., Kim, M.-K., Kwak, H.-R., Choi, H.-S., Nam, M., Choe, J. et al. 2018. Molecular dissection of distinct symptoms induced by tomato chlorosis virus and Tomato yellow leaf curl virus based on comparative transcriptome analysis. Virology 516: 1-20. 

  54. Shang, J., Xi, D.-H., Xu, F., Wang, S.-D., Cao, S., Xu, M.-Y. et al. 2011. A broad-spectrum, efficient and nontransgenic approach to control plant viruses by application of salicylic acid and jasmonic acid. Planta 233: 299-308. 

  55. Shteinberg, M., Mishra, R., Anfoka, G., Altaleb, M., Brotman, Y., Moshelion, M. et al. 2021. Tomato yellow leaf curl virus (TYLCV) promotes plant tolerance to drought. Cells 10: 2875. 

  56. Singh, A. K., Dwivedi, V., Rai, A., Pal, S., Reddy, S. G. E., Rao, D. K. V. et al. 2015. Virus-induced gene silencing of Withania somnifera squalene synthase negatively regulates sterol and defence-related genes resulting in reduced withanolides and biotic stress tolerance. Plant Biotechnol. J. 13: 1287-1299. 

  57. Sun, W.-J., Lv, W.-J., Li, L.-N., Yin, G., Hang, X., Xue, Y. et al. 2016. Eugenol confers resistance to Tomato yellow leaf curl virus (TYLCV) by regulating the expression of SlPer1 in tomato plants. New Biotechnol. 33: 345-354. 

  58. Tahmasebi, A., Zangeneh, M., Tahmasebi, A., Dizaji, A. and Habibi, M. K. 2011. Role of salicylic acid in resistance to plant viruses. Genet. Third Millenn. 8: 2203-2212. (In Persian) 

  59. Tsai, W.-A., Weng, S.-H., Chen, M.-C., Lin, J.-S. and Tsai, W.-S. 2019. Priming of plant resistance to heat stress and tomato yellow leaf curl Thailand virus with plant-derived materials. Front. Plant Sci. 10: 906. 

  60. Verlaan, M. G., Hutton, S. F., Ibrahem, R. M., Kormelink, R., Visser, R. G. F., Scott, J. W. et al. 2013. The Tomato yellow leaf curl virus resistance genes Ty-1 and Ty-3 are allelic and code for DFDGD-class RNA-dependent RNA polymerases. PLoS Genet. 9: e1003399. 

  61. Wang, C. and Fan, Y. 2014. Eugenol enhances the resistance of tomato against Tomato yellow leaf curl virus. J. Sci. Food Agric. 94: 677-682. 

  62. Yalpani, N., Leon, J., Lawton, M. A. and Raskin, I. 1993. Pathway of salicylic acid biosynthesis in healthy and virus-inoculated tobacco. Plant Physiol. 103: 315-321. 

  63. Yang, X., Caro, M., Hutton, S. F., Scott, J. W., Guo, Y., Wang, X. et al. 2014. Fine mapping of the Tomato yellow leaf curl virus resistance gene Ty-2 on chromosome 11 of tomato. Mol. Breed. 34: 749-760. 

  64. Zamir, D., Ekstein-Michelson, I., Zakay, Y., Navot, N., Zeidan, M., Sarfatti, M. et al. 1994. Mapping and introgression of a Tomato yellow leaf curl virus tolerance gene, Ty-1. Theor. Appl. Genet. 88: 141-146. 

  65. Zeshan, M. A., Khan, M. A., Ali, K. S. and Arshad, M. 2016. Phenotypic evaluation of tomato germplasm for the source of resistance against tomato leaf curl virus disease. J. Anim. Plant Sci. 26: 194-200. 

저자의 다른 논문 :

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로