$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

동충하초(Cordyceps spp.)의 유효 생리활성 성분인 cordycepin의 근감소증 예방에 대한 연구 동향
Research Trends on the Therapeutic Potential of Cordycepin, an Active Ingredient of the Insect Fungus Cordyceps spp., for the Prevention of Sarcopenia 원문보기

생명과학회지 = Journal of life science, v.32 no.6, 2022년, pp.482 - 490  

김성옥 (경성대학교 생명보건대학 식품영양학과) ,  최영현 (동의대학교 한의과대학 생화학교실)

초록
AI-Helper 아이콘AI-Helper

근육 양과 근력의 감소에 의한 근감소증은 다양한 병적 상태의 악화, 삶의 질 저하, 사망률의 증가를 동반하며, 기대수명이 증가함에 따라 앞으로도 유병률은 계속 증가할 것이다. 노화 과정에서 만성 산화 스트레스와 염증 반응의 증가는 골격근 소실의 주요 원인으로 작용하며, 에너지 대사에 필수적인 미토콘드리아의 기능 장애와 관련된 자가포식세포사멸 신호의 교란은 근육 단백질의 손실을 가속화한다. 오래전부터 각종 질병의 예방 및 치료에 널리 사용되어온 동충하초의 주요 생리활성물질인 cordycepin의 약리학적 효과는 항산화 및 항염증 작용과 직접적인 관련이 있는 것으로 알려져 있다. 본 총설에서는 근감소증의 예방과 치료에의 적용을 위한 cordycepin의 세포사멸, 자가포식, 단백질의 이화작용 및 근육 재생에 중요한 위성세포의 활성에 대한 연관성을 제시하였다. 비록 현재까지 근감소증에 대한 cordycepin의 연구는 미진한 수준이지만, 그동안의 연구 결과에서 cordycepin은 노화로 인한 미토콘드리아 기능 약화를 억제하고 근육 단백질의 분해를 차단하는 데 기여할 수 있음을 알 수 있다. 또한 근세포 손상에 대한 cordycepin의 보호 효과는 항산화 및 항염증 활성과 밀접한 관련이 있음을 제안한다. 따라서 근세포의 노화방지에 관여하는 cordycepin의 분자생물학적 기전을 중심으로 보다 지속적인 기초 연구가 필요할 것으로 사료된다.

Abstract AI-Helper 아이콘AI-Helper

Sarcopenia, a geriatric and multifactorial syndrome characterized by progressive systemic skeletal muscle disorder, may be associated with many comorbidities. Sarcopenia caused by a decrease in muscle mass and muscle strength is accompanied by the aggravation of various pathological conditions, and ...

주제어

표/그림 (5)

AI 본문요약
AI-Helper 아이콘 AI-Helper

문제 정의

  • 그러나 노화, 다양한 암, 대사성질환, 패폐혈증 및 후천성 면역 결핍증 (acquired immune deficiency syndrome, AIDS) 등의 원인에 의해 발생되는 근위축 및 근감소증에 대한 cordycepin의관련 연구는 아직 초기 단계 수준이다. 따라서 본 총설에서는 cordycepin의 항노화 활성의 잠재성에 대해, 특히 근감소증의 발생 기전을 중심으로 한 예방 및 치료적 연구의 필요성을 제안하고자 한다.
  • 그동안의 연구에 의하면 cordycepin은 항노화 효능[2]뿐만 아니라, 항산화제[67], 항염증제[26], 항당뇨병제[52], 신경 보호 효과[66, 78] 및 항종양[15, 37]과 같은 다양한 약리학적 효능이 있음이 밝혀졌다. 최근 cordycepin이 다양한 근육 조직에서 유익한 효능이 있음이 보고되고 있으며 [75, 35], 본 총설에서는 cordycepin의 항노화 활성에 대해, 특히 근감소증 억제에 미치는 기전 중심으로 연구 동향을 소개하고자 한다.
본문요약 정보가 도움이 되었나요?

참고문헌 (81)

  1. Arora, D. K., Ajello, L. and Mukerji, K. G. 1991. In handbook of applied mycology. Marcel Dekker Ltd, USA. 

  2. Ashraf, S. A., Elkhalifa, A. E. O, Siddiqui, A. J., Patel, M., Awadelkareem, A. M., Snoussi, M., Ashraf, M. S. Adnan, M. and Hadi, S. 2020. Cordycepin for health and wellbeing: A potent bioactive metabolite of an entomopathogenic cordyceps medicinal fungus and its nutraceutical and therapeutic potential. Molecules 12, 2735. 

  3. Badanjak, K., Fixemer, S., Smajic, S., Skupin, A. and Grunewald, A. 2021. The contribution of mcroglia to neuroinflammation in Parkinson's disease. Int. J. Mol. Sci. 22, 4676. 

  4. Bertheloot, D., Latz, E. and Franklin, B. S. 2021. Necroptosis, pyroptosis and apoptosis: an intricate game of cell death. Cell Mol. Immunol. 18, 1106-1121. 

  5. Bloemberg, D. and Quadrilatero, J. 2021. Autophagy displays divergent roles during intermittent amino acid starvation and toxic stress-induced senescence in cultured skeletal muscle cells. J. Cell Physiol. 236, 3099-3113. 

  6. Chen, S. Z. and Guan, D. Y. 1995. Freshness-preserved cordyceps and food processing method. Chinese patent CN 1075402. 

  7. Choi, Y. H., Kim, G. Y. and Lee, H. H. 2014. Anti-inflammatory effects of cordycepin in lipopolysaccharide-stimulated RAW 264.7 macrophages through Toll-like receptor 4-mediated suppression of mitogen-activated protein kinases and NF-κB signaling pathways. Drug Des. Dev. Ther. 8, 1941. 

  8. Cohen, S., Nathan, J. A. and Goldberg, A. L. 2015. Muscle wasting in disease: molecular mechanisms and promising therapies. Nat. Rev. Drug Discov. 14, 58-74. 

  9. Colleluori, G. and Villareal, D. T. 2021. Aging, obesity, sarcopenia and the effect of diet and exercise intervention. Exp. Gerontol. 155, 111561. 

  10. Cruz-Jentoft, A. J., Baeyens, J. P., Bauer, J. M., Boirie, Y., Cederholm, T., Landi, F., Martin, F. C., Michel, J. P., Rolland, Y., Schneider, S. M., Topinkova, E., Vandewoude, M. and Zamboni, M. 2010. European working group on sarcopenia in older people. Sarcopenia: European consensus on definition and diagnosis: report of the european working group on sarcopenia in older people. Age Ageing 39, 412-423. 

  11. Cruz-Jentoft, A. J. and Sayer, A. A. 2019. Sarcopenia. Lancet 29, 2636-2646. 

  12. Cunningham, K. G., Manson, W., Spring, F. S. and Hutchinson, S. A. 1950. Cordycepin, a metabolic product isolated from cultures of Cordyceps militaris (Linn.) Link. Nature 166, 949. 

  13. Das, G., Shin, H. S., Leyva-Gomez, G., Prado-Audelo, M. L. D., Cortes, H., Singh, Y. D., Panda, M. K., Mishra, A. P., Nigam, M., Saklani, S., Chaturi, P. K., Martorell, M., Cruz-Martins, N., Sharma, V., Garg, N., Sharma, R. and Patra, J. K. 2021. Cordyceps spp.: A review on its immune-stimulatory and other biological potentials. Front. Pharmacol. 11, 602364. 

  14. Deng, M., Lin, C., Zeng, X., Zhang, J., Wen, F., Liu, Z., Wu, H. and Wu, X. 2020. Involvement of p53, p21, and caspase-3 in apoptosis of coronary artery smooth muscle cells in a kawasaki vasculitis mouse model. Med. Sci. Monit. 26, e922429. 

  15. Deng, Q., Li, X., Fang, C., Li, X., Zhang, J., Xi, Q., Li, Y. and Zhang, R. 2022. Cordycepin enhances anti-tumor immunity in colon cancer by inhibiting phagocytosis immune checkpoint CD47 expression. Int. Immunopharmacol. 16, 107. 

  16. Dodds, R. M., Syddall, H. E., Cooper, R., Benzeval, M., Deary, I. J., Dennison, E. M., Der, G., Gale, C. R., Inskip, H. M., Jagger, C., Kirkwood, T. B., Lawlor, D. A., Robinson, S. M., Starr, J. M., Steptoe, A., Tilling, K., Kuh, D., Cooper, C. and Sayer, A. A. 2014. Grip strength across the life course: Normative data from twelve British studies. PLoS One 9, e113637. 

  17. Dong, C., Vashisht, A. and Hegde, A. N. 2014. Proteasome regulates the mediators of cytoplasmic polyadenylation signaling during late-phase long-term potentiation. Neurosci. Lett. 583, 199-204. 

  18. Dou, C., Cao, Z., Ding, N., Hou, T., Luo, F., Kang, F., Yang, X., Jiang, H., Xie, Z., Hu, M., Xu, J. and Dong, S. 2016. Cordycepin prevents bone loss through inhibiting osteoclastogenesis by scavenging ROS generation. Nutrients 8, 231. 

  19. Dumont, N. A., Bentzinger, C. F., Sincennes, M. C. and Rudnicki, M. A. 2015. Satellite cells and skeletal muscle regeneration. Compr. Physiol. 5, 1027-1059. 

  20. Elmore, A. 2007. Apoptosis: A review of programmed cell death. Toxicol. Pathol. 35, 498-516. 

  21. Ferrucci, L., de Cabo, R., Knuth, N. D. and Studenski, S. 2012. Of Greek heroes, wiggling worms, mighty mice, and old body builders. J. Gerontol. A. Biol. Sci. Med. Sci. 67, 13-16. 

  22. Frangos, S. M., Bishop, D. J. and Holloway, G. P. 2021. Revisiting the contribution of mitochondrial biology to the pathophysiology of skeletal muscle insulin resistance. Biochem. J. 478, 3809-3826. 

  23. Garcia-Prat, L., Martinez-Vicente, M., Perdiguero, E., Ortet, L., Rodriguez-Ubreva, J., Rebollo, E., Ruiz-Bonilla, V., Gutarra, S., Ballestar, E., Serrano, A. L., Sandri, M. and Munoz-Canoves, P. 2016. Autophagy maintains stemness by preventing senescence. Nature 529, 37-42. 

  24. Hall, J. 2020. Guyton & Hall Physiology Review 4th Ed. 

  25. Haberecht-Muller, S., Kruger, E. and Fielitz, J. 2021. Out of control: The role of the ubiquitin proteasome system in skeletal muscle during inflammation. Biomolecules 11, 1327. 

  26. Han, F., Dou, M., Wang, Y., Xu, C., Li, Y., Ding, X., Xue, W., Zheng, J., Tian, P. and Ding, C. 2020. Cordycepin protects renal ischemia/reperfusion injury through regulating inflammation, apoptosis, and oxidative stress. Acta Biochim. Biophys. Sin (Shanghai). 52, 125-132. 

  27. He, W., Zhang, M. F., Ye, J., Jiang, T. T., Fang, X. and Song, Y. 2010. Cordycepin induces apoptosis by enhancing JNK and p38 kinase activity and increasing the protein expression of Bcl-2 pro-apoptotic molecules. J. Zhejiang Univ. Sci. B. 11, 654-660. 

  28. Hong, S. M and Choi, W. H. 2012. Clinical and physiopathological mechanism of sarcopenia. Kor. J. Intern. Med. 83, 444-454. 

  29. Jaiboonma, A., Kaok,aen P., Chaicharoenaudomrung, N., Kunhorm, P., Janebodin, K., Noisa, P. and Jitprasertwong, P. 2020. Cordycepin attenuates salivary hypofunction through the prevention of oxidative stress in human submandibular gland cells. Int. J. Med. Sci. 17, 1733. 

  30. Jeong, J. W., Jin, C. Y., Kim, G. Y., Lee, J. D., Park, C., Kim, G. D., Kim, W. J., Jung, W. K., Seo, S. K., Choi, I. W. and Choi, Y. H. 2010. Anti-inflammatory effects of cordycepin via suppression of inflammatory mediators in BV2 microglial cells. Int. Immunopharmacol. 10, 1580-1586. 

  31. Kalinkovich, A. and Livshits, G. 2017. Sarcopenic obesity or obese sarcopenia: A cross talk between age-associated adipose tissue and skeletal muscle inflammation as a main mechanism of the pathogenesis. Ageing Res. Rev. 35, 200-221. 

  32. Khan, M. A. and Tania, M. Cordycepin in anticancer research: Molecular mechanism of therapeutic effects. Curr. Med. Chem. 27, 983-996. 

  33. Kim, S. O., Cha, H. J., Park, C., Lee, H., Hong, S. H., Jeong, S. J., Park, S. H., Kim, G. Y., Lee, S. H., Jin, C. Y., Hwang, E. J. and Choi, Y. H. Cordycepin induces apoptosis in human bladder cancer T24 cells through ROS-dependent inhibition of the PI3K/Akt signaling pathway. Biosci. Trends. 13, 324-333. 

  34. Kobayasi, Y. 1982. Keys to the taxa of the genera Cordyceps and Torrubiella. Trans. Mycol. Soc. Japan 23, 329-364. 

  35. Kondrashov, A., Meijer, H. A., Barthet-Barateig, A., Parker, H. N., Khurshid, A., Tessier, S., Sicard, M., Knox, A. J., Pang, L. and De Moor, C. H. 2012. Inhibition of polyadenylation reduces inflammatory gene induction. RNA 18, 2236-2250. 

  36. Kusama, K., Miyagawa, M., Ota, K., Kuwabara, N., Saeki, K., Ohnishi, Y., Kumaki, Y., Aizawa, T., Nakasone, T., Okamatsu, S., Miyaoka, H. and Tamura, K. 2020. Cordyceps militaris fuit body extract decreases testosterone catabolism and testosterone-stimulated prostate hypertrophy. Nutrients 26, 50. 

  37. Lee, M. J., Lee, J. C., Hsieh, J. H., Lin, M. Y., Shih, I. A., You, H. L. and Wang, K. 2021. Cordycepin inhibits the proliferation of malignant peripheral nerve sheath tumor cells through the p53/Sp1/tubulin pathway. Am. J. Cancer Res. 15, 1247-1266. 

  38. Lei, J., Wei, Y., Song, P., Li, Y., Zhang, T., Feng, Q. and Xu, G. 2018. Cordycepin inhibits LPS-induced acute lung injury by inhibiting inflammation and oxidative stress. Eur. J. Pharmacol. 5, 110-114. 

  39. Li, S. Z., Ren, J. W., Fei, J., Zhang, X. D. and Du, R. L. 2019. Cordycepin induces Bax-dependent apoptosis in colorectal cancer cells. Mol. Med. Rep. 19, 901-908. 

  40. Liang Y. L., Liu, Y., Yang, J. W. and Liu, C. X. 1997. Studies on pharmacological activities of cultivated Cordyceps sinensis. Phytotheraphy Res. 11, 237-241. 

  41. Liu, C., Qi, M., Li, L., Yuan, Y., Wu, X. and Fu, J. 2020. Natural cordycepin induces apoptosis and suppresses metastasis in breast cancer cells by inhibiting the Hedgehog pathway. Food Funct. 11, 2107-2116. 

  42. Liu, S., Meng, F., Zhang, D., Shi, D., Zhou, J., Guo, S. and Chang, X. 2022. Lonicera caerulea berry polyphenols extract alleviates exercise fatigue in mice by reducing oxidative stress, inflammation, skeletal muscle cell apoptosis, and by increasing cell proliferation. Front. Nutr. 9, 853225. 

  43. Lloyd, N. 2016. AIM coalition announces establishment of ICD-10-CM code for sarcopenia by the Centers for Disease Control and Prevention. Available from: https://www.prweb.com/releases/2016/04/prweb13376057.htm. 

  44. Manini, T. M., Hong, S. L. and Clark, B. C. 2013. Aging and muscle: a neuron's perspective. Curr. Opin. Clin. Nutr. Metab. Care 16, 21-26. 

  45. Marogianni, C., Sokratous, M., Dardiotis, E., Hadjigeorgiou, G. M., Bogdanos, D. and Xiromerisiou, G. 2020. Neurodegeneration and inflammation-an interesting interplay in Parkinson's disease. Int. J. Mol. Sci. 21, 8421. 

  46. McGrath, M. J., Eramo, M. J., Gurung, R., Sriratana, A., Gehrig, S. M., Lynch, G. S., Lourdes, S. R., Koentgen, F., Feeney, S. J., Lazarou, M., McLean, C. A. and Mitchell, C. A. 2021. Defective lysosome reformation during autophagy causes skeletal muscle disease. J. Clin. Invest. 131, e135124. 

  47. McKendry, J., Stokes, T., Mcleod, J. C. and Phillips, S. M. 2021. Resistance exercise, aging, disuse, and muscle protein metabolism. Compr. Physiol. 11, 2249-2278. 

  48. Narici, M. V., Reeves, N. D., Morse, C. I. and Maganaris, C. N. 2004. Muscular adaptations to resistance exercise in the elderly. J. Musculoskelet. Neuronal Interact. 4, 161-164 

  49. Nikawa, T., Ulla, A. and Sakakibara, I. 2021. Polyphenols and their effects on muscle atrophy and muscle health. Molecules 26, 4887. 

  50. Norbury, C. J. and Hickson, I. D. Cellular responses to DNA damage. Annu. Rev. Pharmacol. Toxicol. 41, 367-401. 

  51. Park, C., Jeong, J. W. and Choi, Y. H. 2017. Induction of muscle atrophy by dexamethasone and hydrogen peroxide in differentiated C2C12 myotubes. J. Life Sci. 27, 1479-1785. 

  52. Parunyakul, K., Srisuksai, K., Charoenlappanit, S., Phaonakrop, N., Roytrakul, S. and Fungfuang, W. 2021. Metabolic impacts of cordycepin on hepatic proteomic expression in streptozotocin-induced type 1 diabetic mice. PLoS One 16, e0256140. 

  53. Pasiakos, S. M., Berryman, C. E., Carrigan, C. T., Young, A. J. and Carbone, J. W. 2017. Muscle protein turnover and the molecular regulation of muscle mass during hypoxia. Med. Sci. Sports Exerc. 49, 1340-1350. 

  54. Paterson, R. R. 2008. Cordyceps: A traditional Chinese medicine and another fungal therapeutic biofactory? Phytochemistry 69. 1469-1495. 

  55. Payette, H., Hanusaik, N., Boutier, V., Morais, J. A. and Gray-Donald, K. 1998. Muscle strength and functional mobility in relation to lean body mass in free-living frail elderly women. Eur. J. Clin. Nutr. 52, 45-53. 

  56. Peterson, S. J. and Mozer, M. 2017. Differentiating sarcopenia and cachexia among patients with cancer. Nutr. Clin. Pract. 32, 30-39. 

  57. Pette, D., and Staron, R. S. 2000. Myosin isoforms, muscle fiber types, and transitions. Microsc. Res. Tech. 50, 500-509. 

  58. Radhi, M., Ashraf, S., Lawrence, S., Tranholm, A. A., Wellham, P. A. D., Hafeez, A., Khamis, A. S., Thomas, R., McWilliams, D. and de Moor, C, H. 2021. A systematic review of the biological effects of cordycepin. Molecules 26, 5886. 

  59. Ramesh, T., Yoo, S. K., Kim, S. W., Hwang, S. Y., Sohn, S. H., Kim, I. W. and Kim, S. K. 2012. Cordycepin (3'deoxyadenosine) attenuates age-related oxidative stress and ameliorates antioxidant capacity in rats. Exp. Gerontol. 47, 979-987. 

  60. Riuzzi, F., Sorci, G., Arcuri, C., Giambanco, I., Bellezza, I., Minelli, A. and Donato, R. 2018. Cellular and molecular mechanisms of sarcopenia: The S100B perspective. J. Cachexia Sarcopenia Muscle 9, 1255-1268. 

  61. Rosenberg, I. H. 1997. Sarcopenia: Origins and clinical relevance. J. Nutr. 127, 990S-991S. 

  62. Sakuma, K. and Yamaguchi, A. 2018. Recent advances in pharmacological, hormonal, and nutritional intervention for sarcopenia. Pflugers Arch. 470, 449-460. 

  63. Schakman, O., Kalista, S., Barbe, C., Loumaye, A. and Thissen, J. P. 2013. Glucocorticoid-induced skeletal muscle atrophy. Int. J. Biochem. Cell Biol. 45, 2163-2172. 

  64. Schiaffino, S. and Reggiani, C. 2011. Fiber types in mammalian skeletal muscles. Physiol Rev. 91, 1447-1531. 

  65. Sinaki, M., Khosla, S., Limburg, P. J., Rogers, J. W. and Murtaugh, P. A. 1993. Muscle strength in osteoporotic versus normal women. Osteoporos. Int. 3, 8-12. 

  66. Song, H., Huang, L. P., Li, Y., Liu, C., Wang, S., Meng, W., Wei, S., Liu, X. P., Gong, Y. and Yao, L. H. 2018. Neuroprotective effects of cordycepin inhibit Aβ-induced apoptosis in hippocampal neurons. Neurotoxicology 68, 73-80. 

  67. Srisuksai, K., Parunyakul, K., Phaonakrop, N., Roytakul, S. and Fungfuang, W. 2021. The effect of cordycepin on brain oxidative stress and protein expression in streptozotocin-induced diabetic mice. J. Vet. Med. Sci. 15, 1425-1434. 

  68. Su, J., Dou, Z., Hong, H., Xu, F., Lu, X., Lu, Q., Ye, T. and Huang, C. 2022. KRIBB11: A promising drug that promotes microglial process elongation and suppresses neuroinflammation. Front. Pharmacol. 13, 857081. 

  69. Ter Beek, L., Vanhauwaert, E., Slinde, F., Orrevall, Y., Henriksen, C., Johansson, M., Vereecken, C., Rothenberg, E. and Jager-Wittenaar, H. 2016. Unsatisfactory knowledge and use of terminology regarding malnutrition, starvation, cachexia and sarcopenia among dietitians. Clin. Nutr. 35, 1450-1456. 

  70. Tuli, H. S., Sandhu, S. S. and Sharma, A. K. 2014. Pharmacological and therapeutic potential of Cordyceps with special reference to cordycepin. 3 Biotech. 4, 1-12. 

  71. Wang, M., Tan, Y., Shi, Y., Wang, X., Liao, Z. and Wei, P. 2020. Diabetes and sarcopenic obesity: Pathogenesis, diagnosis, and treatments. Front. Endocrinol. (Lausanne) 11, 568. 

  72. Wang, X., Xi, D., Mo, J., Wang, K., Luo, Y., Xia, E., Huang, R., Luo, S., Wei, J. and Ren, Z. 2020. Cordycepin exhibits a suppressive effect on T cells through inhibiting TCR signaling cascade in CFA-induced inflammation mice model. Immunopharmacol. Immunotoxicol. 42, 119-127. 

  73. Won, K. J., Lee, S. C., Lee, C. K., Lee, H. M., Lee, S. H., Fang, Z., Choi, O. B., Jin, M., Kim, J., Park, T., Choi, W. S., Kim, S. K. and Kim, B. 2009. Cordycepin attenuates neointimal formation by inhibiting reactive oxygen species-mediated responses in vascular smooth muscle cells in rats. J. Pharmacol. Sci. 109, 403-412. 

  74. Yang, R., Wang, X., Xi, D., Mo, J., Wang, K., Luo, S., Wei, J., Ren, Z., Pang, H. and Luo, Y. 2020. Cordycepin attenuates IFN-γ-induced macrophage IP-10 and mig expressions by inhibiting STAT1 activity in CFA-induced inflammation mice model. Inflammation 43, 752-764. 

  75. Yao, L. H., Meng, W., Song, R. F., Xiong, Q. P., Sun, W., Luo, Z. Q., Yan, W. W., Li, Y. P., Li, X. P., Li, H. H. and Xiao, P. 2014. Modulation effects of cordycepin on the skeletal muscle contraction of toad gastrocnemius muscle. Eur. J. Pharmacol. 5, 9-15. 

  76. Yoshida, T. and Delafontaine, P. 2020. Mechanisms of IGF-1-mediated regulation of skeletal muscle hypertrophy and atrophy. Cells 9, 1970. 

  77. Zhang, D. W., Wang, Z. L., Qi, W., Lei, W. and Zhao, G. Y. 2014. Cordycepin (3'-deoxyadenosine) down-regulates the proinflammatory cytokines in inflammation-induced osteoporosis model. Inflammation 37, 1044-1049. 

  78. Zhang, X. L., Huang, W. M., Tang, P. C., Sun, Y., Zhang, X., Qiu, L., Yu, B. C., Zhang, X. Y., Hong, Y. X., He, Y. and Ge, X. Q. 2021. Anti-inflammatory and neuroprotective effects of natural cordycepin in rotenone-induced PD models through inhibiting Drp1-mediated mitochondrial fission. Neurotoxicology 84, 1-13. 

  79. Zheng, Q. W., Gao, S. X., Lv, J., Chen, D. Y., Chen, J., Li, H. H. and Guan, J. C. 2018. Effect of cordycepin on apoptosis and autophagy of tongue cancer cells in vitro and the molecular mechanism. Nan Fang Yi Ke Da Xue Xue Bao. 38, 390-394. 

  80. Ziaaldini, M. M., Marzetti, E., Picca, A. and Murlasits, Z. 2017. Biochemical pathways of sarcopenia and their modulation by physical exercise: A narrative review. Front Med. 4, 167. 

  81. Zuo, S. Q., Li, C., Liu, Y. L., Tan, Y. H., Wan, X., Xu, T., Li, Q., Wang L., Wu, Y. L., Deng, F. M. and Tang, B. 2021. Cordycepin inhibits cell senescence by ameliorating lysosomal dysfunction and inducing autophagy through the AMPK and mTOR-p70S6K pathway. FEBS Open Bio. 11, 2705-2714. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로