$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

동충하초 유래 cordycepin의 항암 활성 기전 최근 연구 동향
Anti-cancer Properties and Relevant Mechanisms of Cordycepin, an Active Ingredient of the Insect Fungus Cordyceps spp., 원문보기

생명과학회지 = Journal of life science, v.25 no.5 = no.181, 2015년, pp.607 - 614  

정진우 (동의대학교 한의과대학 생화학교실) ,  최영현 (동의대학교 한의과대학 생화학교실)

초록
AI-Helper 아이콘AI-Helper

암은 전 세계 사망률과 질병률의 가장 큰 원인이다. Cordycepin (3'-deoxyadenosine)은 동양의 전통의학에서 널리 사용되고 있는 동충하초의 주요 기능성 구성요소이자 아데노신 유사체로 알려져 있다. 지난 10년간 cordycepin은 in vitro 및 in vivo 모델에서 면역활성 기능뿐 만 아니라 항염증, 항산화 및 항암 등 다양한 약리학적 특성을 가진다고 보고되어왔다. 최근 들어 많은 연구들은 cordycepin을 화학예방요법 작용제 측면에서 흥미로운 특성을 보고하였고, 실험적인 증거들에 의해 세포사멸 촉진, 세포주기 정지 유도, 세포 내 신호 전달 경로 조절, 암세포의 침윤 및 전이 억제를 통해 암의 증식을 지연시킨다고 보고되어 왔다. Cordycpin은 많은 암 세포에서 retinoblastoma protein (RB)의 인산화를 막고 cyclin-dependent kinases (Cdks) inhibitors를 활성화시켜 G2/M기의 진행을 막는 효력이 있음이 밝혀졌다. 또한, 세포 사멸을 유도하기 위해 세포 내/외부에 존재하는 경로를 활성화시켜 활성 산소종을 생성하고 하위에 존재하는 kinase cascade 반응을 개시한다. 아울러 cordycepin은 또 다른 세포 사멸인 autophagy와 같은 대체 경로를 활성화 시킬 수도 있으며, nuclear factor-kappa B 및 activated protein-1 신호 경로를 포함한 다양한 기전을 통하여 암세포 분리, 이주, 침윤 및 전이 또한 억제 할 수 있다. 본 총설에서는 cordycepin의 항암 작용 기전을 요약하고, 다양한 암 발생의 치료제로서 가능성을 논의하고자 한다.

Abstract AI-Helper 아이콘AI-Helper

Cancers are the largest cause of mortality and morbidity all over the world. Cordycepin, an adenosine analog, is a major functional component of the Cordyceps species, which has been widely used in traditional Oriental medicine. Over the last decade, this compound has been reported to possess many p...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • Cordycepin의 효능은 1970년대 핵산 합성(특히 폴리아데닐화 억제) 억제 효과에 대해 알려지면서 활발히 진행되어 왔으며, 암을 포함한 다양한 인체질환의 예방 및 치료제로서의 발굴 가능성을 보여주고 있다. 본 총설에서는 cordycepin의 항암활성에 대한 최근연구들의 결과를 소개하고자 한다.
본문요약 정보가 도움이 되었나요?

참고문헌 (62)

  1. Bosch, F. X., Ribes, J., Diaz, M. and Cleries, R. 2004. Primary liver cancer: worldwide incidence and trends. Gastroenterology 127, 5-16. 

  2. Choi, S., Lim, M. H., Kim, K. M., Jeon, B. H., Song, W. O. and Kim, T. W. 2011. Cordycepin-induced apoptosis and autophagy in breast cancer cells are independent of the estrogen receptor. Toxicol. Appl. Pharmacol. 257, 165-173. 

  3. Coqueret, O. 2003. New roles for p21 and p27 cell-cycle inhibitors: a function for each cell compartment? Trends Cell Biol. 13, 65-70. 

  4. Cunningham, K. G., Manson, W., Spring, F. S. and Hutchinson, S. A. 1950. Cordycepin, a metabolic product isolated from cultures of Cordyceps militaris (Linn.) Link. Nature 166, 949. 

  5. Dulić, V., Lees, E. and Reed, S. I. 1992. Association of human cyclin E with a periodic G1-S phase protein kinase. Science 257, 1958-1961. 

  6. Elledge, S. J., Richman, R., Hall, F. L., Williams, R. T., Lodgson, N. and Harper, J. W. 1992. Cdk2 encodes a 33-kDa cyclin A-associated protein kinase and is expressed before Cdc2 in the cell cycle. Proc. Natl. Acad. Sci. USA 89, 2907-2911. 

  7. Han, S. I., Kim, Y. S. and Kim, T. H. 2008. Role of apoptotic and necrotic cell death under physiologic conditions. BMB Rep. 41, 1-10. 

  8. He, W., Zhang, M. F., Ye, J., Jiang, T. T., Fang, X. and Song, Y. 2010. Cordycepin induces apoptosis by enhancing JNK and p38 kinase activity and increasing the protein expression of Bcl-2 pro-apoptotic molecules. J. Zhejiang Univ. Sci. B 11, 654-660. 

  9. Holcik, M., Gibson, H. and Korneluk, R. G. 2001. XIAP: apoptotic brake and promising therapeutic target. Apoptosis 6, 253-261. 

  10. Huerta, S., Goulet, E. J., Huerta-Yepez, S. and Livingston, E. H. 2007. Screening and detection of apoptosis. J. Surg. Res. 139, 143-156. 

  11. Imesch, P., Hornung, R., Fink, D. and Fedier, A. 2011. Cordycepin (3′-deoxyadenosine), an inhibitor of mRNA polyadenylation, suppresses proliferation and activates apoptosis in human epithelial endometriotic cells in vitro. Gynecol. Obstet. Invest. 72, 43-49. 

  12. Jang, K. J., Kwon, G. S., Jeong, J. W., Kim, C. H., Yoon, H. M., Kim, G. Y., Shim, J. H., Moon, S. K., Kim, W. J. and Choi, Y. H. 2015. Cordyceptin induces apoptosis through repressing hTERT expression and inducing extranuclear export of hTERT. J. Biosci. Bioeng. 119, 351-357. 

  13. Jemal, A., Bray, F., Center, M. M., Ferlay, J., Ward, E. and Forman. D. 2011. Global cancer statistics. CAA Cancer J. Clin. 61, 69-90. 

  14. Jeong, J. W. and Choi, Y. H. 2014. Cordycepin inhibits migration and invasion of HCT116 human colorectal carcinoma cells by tightening of tight junctions and inhibition of matrix metalloproteinase activity. J. Kor. Soc. Food Sci. Nutr. 43, 86-92. 

  15. Jeong, J. W., Jin, C. Y., Park, C., Han, M. H., Kim, G. Y., Moon, S. K., Kim, C. G., Jeong, Y. K., Kim, W. J., Lee, J. D. and Choi, Y. H. 2012. Inhibition of migration and invasion of LNCaP human prostate carcinoma cells by cordycepin through inactivation of Akt. Int. J. Oncol. 40, 1697-704. 

  16. Jeong, J. W., Jin, C. Y., Park, C., Hong, S. H., Kim, G. Y., Jeong, Y. K., Lee, J. D., Yoo, Y. H. and Choi, Y. H. 2011. Induction of apoptosis by cordycepin via reactive oxygen species generation in human leukemia cells. Toxicol. In Vitro 25, 817-824. 

  17. Jung, S. M., Park, S. S., Kim, W. J. and Moon, S. K. 2012. Ras/ERK1 pathway regulation of p27KIP1-mediated G1-phase cell-cycle arrest in cordycepin-induced inhibition of the proliferation of vascular smooth muscle cells. Eur. J. Pharmacol. 681, 15-22. 

  18. Kobayasi, Y. 1982. Keys to the taxa of the genera Cordyceps and Torrubiella. Trans. Mycol. Soc. Japan 23, 329-364. 

  19. Koç, Y., Urbano, A. G., Sweeney, E. B. and McCaffrey, R. 1996. Induction of apoptosis by cordycepin in ADA-inhibited TdT-positive leukemia cells. Leukemia 10, 1019-1024. 

  20. Koff, A., Giordano, A., Desai, D., Yamashita, K., Harper, J. W., Elledge, S., Nishimoto, T., Morgan, D. O., Franza, B. R. and Roberts, J. M. 1992. Formation and activation of a cyclin E-Cdk2 complex during the G1 phase of the human cell cycle. Science 257, 1689-1694. 

  21. Lamszus, K., Kunkel, P. and Westphal, M. 2003. Invasion as limitation to antiangiogenic glioma therapy. Acta. Neurochir. Suppl. 88, 169-177. 

  22. Lazebnik, Y. A., Kaufmann, S. H., Desnoyers, S., Poirier, G. G. and Earnshaw, W. C. 1994. Cleavage of poly (ADP-ribose) polymerase by a proteinase with properties like ICE. Nature 371, 346-347. 

  23. Lee, E. J., Kim, W. J. and Moon, S. K. 2010. Cordycepin suppressesTNF-alpha-induced invasion, migration and matrix metalloproteinase-9 expression in human bladder cancer cells. Phytother. Res. 24, 1755-1761. 

  24. Lee, H. H., Jeong, J. W., Lee, J. H., Kim, G. Y., Cheong, J., Jeong, Y. K., Yoo, Y. H. and Choi, Y. H. 2013. Cordycepin increases sensitivity of ep3B human hepatocellular carcinoma cells to TRAIL-mediated apoptosis by inactivating the JNK signaling pathway. Oncol. Rep. 30, 1257-1264. 

  25. Lee, H. H., Kim, S. O., Kim, G. Y., Moon, S. K., Kim, W. J., Jeong, Y. K., Yoo, Y. H. and Choi, Y. H. 2014. Involvement of autophagy in cordycepin-induced apoptosis in human prostate carcinoma LNCaP cells. Environ. Toxicol. Pharmacol. 38, 239-250. 

  26. Lee, H. H., Park, C., Jeong, J. W., Kim, M. J., Seo, M. J., Kang, B. W., Park, J. U., Kim, G. Y., Choi, B. T., Choi, Y. H. and Jeong, Y. K. 2013. Apoptosis induction of human prostate carcinoma cells by cordycepin through reactive oxygen speciesmediated mitochondrial death pathway. Int. J. Oncol. 42, 1036-1044. 

  27. Lee, H. J., Burger, P., Vogel, M., Friese, K. and Bruning, A. 2012. The nucleoside antagonist cordycepin causes DNA double strand breaks in breast cancer cells. Invest. New Drugs 30, 1917-1925. 

  28. Lee, S. J., Kim, S. K., Choi, W. S., Kim, W. J. and Moon, S. K. 2009. Cordycepin causes p21WAF1-mediated G2/M cell-cycle arrest by regulating c-Jun N-terminal kinase activation in human bladder cancer cells. Arch. Biochem. Biophys. 490, 103-106. 

  29. Lee, S. J., Moon, G. S., Jung, K. H., Kim, W. J. and Moon, S. K. 2010. c-Jun N-terminal kinase 1 is required for cordycepin-mediated induction of G2/M cell-cycle arrest via p21WAF1 expression in human colon cancer cells. Food Chem. Toxicol. 48, 277-283. 

  30. Lee, S. Y., Debnath, T., Kim, S. K. and Lim, B. O. 2013. Anti-cancer effect and apoptosis induction of cordycepin through DR3 pathway in the human colonic cancer cell HT-29. Food Chem. Toxicol. 60, 439-447. 

  31. Lee, S. Y., Kim, G. T., Roh, S. H., Song, J. S., Kim, H. J., Hong, S. S., Kwon, S. W. and Park, J. H. 2009. Proteomic analysis of the anticancer effect of ginsenoside Rg3 in human colon cancer cell lines. Biosci. Biotechnol. Biochem. 73, 811-816. 

  32. Li, P., Nijhawan, D., Budihardjo, I., Srinivasula, S. M., Ahmad, M., Alnemri, E. S. and Wang, X. 1997. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91, 479-489. 

  33. Liang, Y. L., Liu, Y., Yang, J. W. and Liu, C. X. 1997. Studies on pharmacological activities of cultivated Cordyceps sinensis. Phytotheraphy Res. 11, 237-241. 

  34. Liao, H. F., Chen, Y. Y., Liu, J. J., Hsu, M. L., Shieh, H. J., Liao, H. J., Shieh, C. J., Shiao, M. S. and Chen, Y. J. 2003. Inhibitory effect of caffeic acid phenethyl ester on angiogenesis, tumor invasion and metastasis. J. Agric. Food Chem. 51, 7907-7912. 

  35. Liao, Y., Ling, J., Zhang, G., Liu, F., Tao, S., Han, Z., Chen, S., Chen, Z. and Le, H. 2015. Cordycepin induces cell cycle arrest and apoptosis by inducing DNA damage and up-regulation of p53 in Leukemia cells. Cell Cycle 14, 761-771. 

  36. Lui, J. C., Wong, J. W., Suen, Y. K., Kwok, T. T., Fung, K. P. and Kong, S. K. 2007. Cordycepin induced eryptosis in mouse erythrocytes through a Ca 2+ -dependent pathway without caspase-3 activation. Arch. Toxicol. 81, 859-8565. 

  37. Luo, X., Budihardjo, I., Zou, H., Slaughter, C. and Wang, X. 1998. Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94, 481-490. 

  38. Magnaghi-Jaulin, L., Groisman, R., Naguibneva, I., Robin, P., Lorain, S., Le Villain, J. P., Troalen, F., Trouche, D. and Harel-Bellan, A. 1998. Retinoblastoma protein represses transcription by recruiting a histone deacetylase. Nature 391, 601-605. 

  39. Masciullo, V., Khalili, K. and Giordano, A. 2000. The Rb family of cell cycle regulatory factors: clinical implications. Int. J. Oncol. 17, 897-902. 

  40. Matsushime, H., Ewen, M. E., Strom, D. K., Kato, J. Y., Hanks, S. K., Roussel, M. F. and Sherr, C. J. 1992. Identification and properties of an atypical catalytic subunit (p34PSK-J3/Cdk4) for mammalian D type G1 cyclins. Cell 71, 323-334. 

  41. Minshull, J., Golsteyn, R., Hill, C. S. and Hunt, T. 1990. The A- and B-type cyclin associated Cdc2 kinases in Xenopus turn on and off at different times in the cell cycle. EMBO J. 9, 2865-2875. 

  42. Morgan, D. O. 1997. Cyclin-dependent kinases: engines, clocks, and microprocessors. Annu. Rev. Cell Dev. Biol. 13, 261-291. 

  43. Mullin, J. M. 1997. Potential interplay between luminal growth factors and increased tight junction permeability in epithelial carcinogenesis. J. Exp. Zool. 279, 484-489. 

  44. Nakamura, K., Konoha, K., Yoshikawa, N., Yamaguchi, Y., Kagota, S., Shinozuka, K. and Kunitomo, M. 2005. Effect of cordycepin (3'-deoxyadenosine) on hematogenic lung metastatic model mice. In Vivo 19, 137-141. 

  45. Noh, E. M., Youn, H. J., Jung, S. H., Han, J. H., Jeong, Y. J., Chung, E. Y., Jung, J. Y., Kim, B. S., Lee, S. H., Lee, Y. R. and Kim, J. S. 2010. Cordycepin inhibits TPA-induced matrix metalloproteinase-9 expression by suppressing the MAPK/AP-1 pathway in MCF-7 human breast cancer cells. Int. J. Mol. Med. 25, 255-260. 

  46. Obeyesekere, M. N., Tucker, S. L. and Zimmerman, S. O. 1994. A model for regulation of the cell cycle incorporating cyclin A, cyclin B and their complexes. Cell Prolif. 27, 105-113. 

  47. Salvesen, G. S. and Duckett, C. S. 2002. IAP proteins: blocking the road to death’s door. Nat. Rev. Mol. Cell Biol. 3, 401-410. 

  48. Schneeberger, E. E. and Lynch, R. D. 2004. The tight junction: a multifunctional complex. Am. J. Physiol. Cell. Physiol. 286, C1213-C1228. 

  49. Schwartz, G. K. 2002. Cdk inhibitors: cell cycle arrest versus apoptosis. Cell Cycle 1, 122-123. 

  50. Shi, P., Huang, Z., Tan, X. and Chen, G. 2008. Proteomic detection of changes in protein expression induced by cordycepin in human hepatocellular carcinoma BEL-7402 cells. Methods Find. Exp. Clin. Pharmacol. 30, 347-353. 

  51. Stetler-Stevenson, W. G. 1990. Type Ⅳ collagenases in tumor invasion and metastasis. Cancer Metastasis Rev. 9, 289-303. 

  52. Swift, J. G., Mukherjee, T. M. and Rowland, R. 1983. Intercellular junctions in hepatocellular carcinoma. J. Submicrosc. Cytol. 15, 799-810. 

  53. Thomadaki, H., Tsiapalis, C. M. and Scorilas, A. 2005. Polyadenylate polymerase modulations in human epithelioid cervix and breast cancer cell lines, treated with etoposide or cordycepin, follow cell cycle rather than apoptosis induction. Biol. Chem. 386, 471-480. 

  54. Tunggal, J. A., Helfrich, I., Schmitz, A., Schwarz, H., Günzel, D., Fromm, M., Kemler, R., Krieg, T. and Niessen, C. M. 2005. E-cadherin is essential for in vivo epidermal barrier function by regulating tight junctions. EMBO J. 24, 1146-1156. 

  55. Van Itallie, C. M. and Anderson, J. M. 2004. The molecular physiology of tight junction pores. Physiology 19, 331-338. 

  56. Vermeulen, K., Van Bockstaele, D. R. and Berneman, Z. N. 2003. The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer. Cell Prolif. 36, 131-149. 

  57. Wang, B. J., Won, S. J., Yu, Z. R. and Su, C. L. 2005. Free radical scavenging and apoptotic effects of Cordyceps sinensis fractionated by supercritical carbon dioxide. Food Chem. Toxicol. 43, 543-552. 

  58. Wong, A. S. and Gumbiner, B. M. 2003. Adhesion-independent mechanism for suppression of tumor cell invasion by E-cadherin. J. Cell Biol. 161, 1191-1203. 

  59. Wu, W. C., Hsiao, J. R., Lian, Y. Y., Lin, C. Y. and Huang, B. M. 2007. The apoptotic effect of cordycepin on human OEC-M1 oral cancer cell line. Cancer Chemother. Pharmacol. 60, 103-108. 

  60. Yoshikawa, N., Kunitomo, M., Kagota, S., Shinozuka, K. and Nakamura, K. 2009. Inhibitory effect of cordycepin on hematogenic metastasis of B16-F1 mouse melanoma cells accelerated by adenosine-5'-diphosphate. Anticancer Res. 29, 3857-3860. 

  61. Zhang, H. S., Gavin, M., Dahiya, A., Postigo, A. A., Ma, D., Luo, R. X., Harbour, J. W. and Dean, D. C. 2000. Exit from G1 and S phase of the cell cycle is regulated by repressor complexes containing HDAC-Rb-hSWI/SNF and RbhSWI/SNF. Cell 101, 79-89. 

  62. Zhu, J. L. and Liu, C. 1992. Modulating effects of extractum semen Persicae and cultivated Cordyceps hyphae on immuno-dysfunction of inpatients with posthepatitic cirrhosis. Chin. J. Integr. Med. 12, 207-210. 

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로