$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

우분과 볏짚의 병합 혐기성 소화를 통한 메탄 생산에 대한 고찰
Effect of Rice Straw on Methane Production Potential of Cow Manure 원문보기

한국환경농학회지 = Korean journal of environmental agriculture, v.41 no.2, 2022년, pp.71 - 81  

박소윤 (전남대학교 농업생명과학대학 농생명화학과) ,  장정아 (전남대학교 농업생명과학대학 농생명화학과) ,  조흠 (서울대학교 공과대학 건설환경공학부) ,  홍진경 (연세대학교 과학기술융합대학 환경에너지공학부) ,  조은혜 (전남대학교 농업생명과학대학 농생명화학과)

Abstract AI-Helper 아이콘AI-Helper

BACKGROUND: Animal manures are one of the biggest sources of greenhouse gases and improper manage-ment of animal wastes contributes to the increasing greenhouse gases in the atmosphere. Con-verting greenhouse gases generated from animal manures to energy is one way of contributing to the net-zero ca...

주제어

참고문헌 (52)

  1. Cheon Y (2022) Review of global carbon neutral strategies and technologies. Journal of the Korean Society of Mineral and Energy Resources Engineers, 59, 99-112. https://doi.org/10.32390/ksmer.2022.59.1.099. 

  2. Kim MS, Koo N, Kim, JG (2020) A comparative study on ammonia emission inventory in livestock manure compost application through a foreign case study. Korean Journal of Environmental Biology, 38(1), 71-81. https://doi.org/10.11626/KJEB.2020.38.1.071. 

  3. Hassan M, Masud SFB, Anwar M, Zhao C, Singh RS, Mehryar E (2022) Methane enhancement by the co-digestion of thermochemical alkali solubilized rice husk and cow manure: Lignocellulosics decomposition perspectives. Biomass Conversion and Biorefinery, 1-13. https://doi.org/10.1007/s13399-022-02310-w. 

  4. Wang K, Yun S, Ke T, An J, Abbas Y, Liu X, Zou M, Liu L, Liu J (2022) Use of bag-filter gas dust in anaerobic digestion of cattle manure for boosting the methane yield and digestate utilization. Bioresource Technology, 126729. https://doi.org/10.1016/j.biortech.2022.126729. 

  5. Kunatsa T, Xia X (2022) A review on anaerobic digestion with focus on the role of biomass co-digestion, modelling and optimisation on biogas production and enhancement. Bioresource Technology, 344, 126311. https://doi.org/10.1016/j.biortech.2021.126311. 

  6. Ma G, Ndegwa P, Harrison JH, Chen Y (2020) Methane yields during anaerobic co-digestion of animal manure with other feedstocks: A meta-analysis. Science of the Total Environment, 728, 138224. https://doi.org/10.1016/j.scitotenv.2020.138224. 

  7. Li Y, Achinas S, Zhao J, Geurkink B, Krooneman J, Euverink GJW (2020) Co-digestion of cow and sheep manure: Performance evaluation and relative microbial activity. Renewable Energy, 153, 553-563. https://doi.org/10.1016/j.renene.2020.02.041. 

  8. Cho J, Kim H, Oh D (2014) Characteristics for co--digestion of food waste and night soil using bmp test. Journal of the Korean GEO-environmental Society, 15, 13-18. https://doi.org/10.14481/jkges.2014.15.9.13. 

  9. Tsapekos P, Kougias P, Alvarado-Morales M, Kovalovszki A, Corbiere M, Angelidaki I (2018) Energy recovery from wastewater microalgae through anaerobic digestion process: Methane potential, continuous reactor operation and modelling aspects. Biochemical Engineering Journal, 139, 1-7. https://doi.org/10.1016/j.bej.2018.08.004. 

  10. Kafle GK, Kim SH (2013) Anaerobic treatment of apple waste with swine manure for biogas production: Batch and continuous operation. Applied Energy, 103, 61-72. https://doi.org/10.1016/j.apenergy.2012.10.018. 

  11. Li Y, Zhao J, Krooneman J, Euverink GJW (2021) Strategies to boost anaerobic digestion performance of cow manure: Laboratory achievements and their full-scale application potential. Science of the Total Environment, 755, 142940. https://doi.org/10.1016/j.scitotenv.2020.142940. 

  12. Jeong K-H, Kim JK, Lee D-j, Cho W-M, Ravindran B, Kwag J-H (2016) Evaluation of solidified fuel value of dairy cattle manure digested by semi-dry anaerobic digestion method. Journal of the Korea Organic Resources Recycling Association, 24, 95-103. https://doi.org/10.17137/korrae.2016.24.4.95. 

  13. Zeynali R, Khojastehpour M, Ebrahimi-Nik M (2017) Effect of ultrasonic pre-treatment on biogas yield and specific energy in anaerobic digestion of fruit and vegetable wholesale market wastes. Sustainable Environment Research, 27, 259-264. https://doi.org/10.1016/j.serj.2017.07.001. 

  14. Angelidaki I, Ahring BK (2000) Methods for increasing the biogas potential from the recalcitrant organic matter contained in manure. Water Science and Technology, 41, 189-194. https://doi.org/10.2166/wst.2000.0071. 

  15. Li R, Chen S, Li X, Saifullah Lar J, He Y, Zhu B (2009) Anaerobic codigestion of kitchen waste with cattle manure for biogas production. Energy & Fuels, 23, 2225-2228. https://doi.org/10.1021/ef8008772. 

  16. Yang Q, Wang H, Larson R, Runge TM (2017) Comparative study of chemical pretreatments of dairy manure for enhanced biomethane production. BioResources, 12, 7363-7375. http://doi.org/10.15376/biores.12.4.7363-7375. 

  17. Budde J, Heiermann M, Quinones TS, Plochl M (2014) Effects of thermobarical pretreatment of cattle waste as feedstock for anaerobic digestion. Waste Management, 34, 522-529. http://doi.org/10.1016/j.wasman.2013.10.023. 

  18. Sutaryo S, Ward AJ, Moller HB (2014) The effect of mixed-enzyme addition in anaerobic digestion on methane yield of dairy cattle manure. Environmental Technology, 35, 2476-2482. http://doi.org/10.1080/09593330.2014.911356. 

  19. Yuan Y, Bian A, Zhang L, Chen Z, Zhou F, Ye F, Jin T, Pan M, Chen Tet al. (2019) Thermal-alkali and enzymes for efficient biomethane production from co-digestion of corn straw and cattle manure. BioResources, 14, 5422-5437. http://doi.org/10.15376/biores.14.3.5422-5437. 

  20. Tufaner F, Avsar Y (2016) Effects of co-substrate on biogas production from cattle manure: A review. International Journal of Environmental Science and Technology, 13, 2303-2312. http://doi.org/10.1007/s13762-016-1069-1. 

  21. Vivekanand V, Mulat DG, Eijsink VG, Horn SJ (2018) Synergistic effects of anaerobic co-digestion of whey, manure and fish ensilage. Bioresource Technology, 249, 35-41. http://doi.org/10.1016/j.biortech.2017.09.169. 

  22. Moset V, Fontaine D, Moller HB (2017) Co-digestion of cattle manure and grass harvested with different technologies. Effect on methane yield, digestate composition and energy balance. Energy, 141, 451-460. https://doi.org/10.1016/j.energy.2017.08.068. 

  23. Kamusoko R, Jingura RM, Parawira W, Sanyika WT (2019) Comparison of pretreatment methods that enhance biomethane production from crop residues-a systematic review. Biofuel Research Journal, 6, 1080. http://doi.org/10.18331/BRJ2019.6.4.4. 

  24. Xavier CA, Moset V, Wahid R, Moller HB (2015) The efficiency of shredded and briquetted wheat straw in anaerobic co-digestion with dairy cattle manure. Biosystems Engineering, 139, 16-24. https://doi.org/10.1016/j.biosystemseng.2015.07.008. 

  25. Jugal Sukhesh M, Venkateswara Rao P (2019) Synergistic effect in anaerobic co-digestion of rice straw and dairy manure-a batch kinetic study. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 41, 2145-2156. https://doi.org/10.1080/15567036.2018.1550536. 

  26. Risberg K, Sun L, Leven L, Horn SJ, Schnurer A (2013) Biogas production from wheat straw and manure-impact of pretreatment and process operating parameters. Bioresource Technology, 149, 232-237. https://doi.org/10.1016/j.biortech.2013.09.054. 

  27. Li D, Liu S, Mi L, Li Z, Yuan Y, Yan Z, Liu X (2015) Effects of feedstock ratio and organic loading rate on the anaerobic mesophilic co-digestion of rice straw and cow manure. Bioresource Technology, 189, 319-326. https://doi.org/10.1016/j.biortech.2015.04.033. 

  28. Li C, Stromberg S, Liu G, Nges IA, Liu J (2017) Assessment of regional biomass as co-substrate in the anaerobic digestion of chicken manure: Impact of co-digestion with chicken processing waste, seagrass and miscanthus. Biochemical Engineering Journal, 118, 1-10. https://doi.org/10.1016/j.bej.2016.11.008. 

  29. Shanmugam P, Horan N (2009) Optimising the biogas production from leather fleshing waste by co-digestion with msw. Bioresource Technology, 100, 4117-4120. http://doi.org/10.1016/j.biortech.2009.03.052. 

  30. Su L, Sun X, Liu C, Ji R, Zhen G, Chen M, Zhang L (2020) Thermophilic solid-state anaerobic digestion of corn straw, cattle manure, and vegetable waste: Effect of temperature, total solid content, and c/n ratio. Archaea, 2020. 8841490. https://doi.org/10.1155/2020/8841490. 

  31. APHA, Standard methods for the examination of water and wastewater. 1998, American Public Health Association (APHA): Washington DC, USA. 

  32. Angelidaki I, Alves M, Bolzonella D, Borzacconi L, Campos J, Guwy A, Kalyuzhnyi S, Jenicek P, Van Lier J (2009) Defining the biomethane potential (bmp) of solid organic wastes and energy crops: A proposed protocol for batch assays. Water Science and Technology, 59, 927-934. http://doi.org/10.2166/wst.2009.040. 

  33. Buswell A, Mueller H (1952) Mechanism of methane fermentation. Industrial & Engineering Chemistry, 44, 550-552. https://doi.org/10.1021/ie50507a033. 

  34. Bah H, Zhang W, Wu S, Qi D, Kizito S, Dong R (2014) Evaluation of batch anaerobic co-digestion of palm pressed fiber and cattle manure under mesophilic conditions. Waste Management, 34, 1984-1991. https://doi.org/10.1016/j.wasman.2014.07.015. 

  35. Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, Glockner FO (2013) Evaluation of general 16s ribosomal rna gene pcr primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Research, 41, e1-e1. https://doi.org/10.1093/nar/gks808. 

  36. Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, Alexander H, Alm EJ, Arumugam M et al. (2019) Reproducible, interactive, scalable and extensible microbiome data science using qiime 2. Nature Biotechnology, 37, 852-857. https://doi.org/10.1038/s41587-019-0209-9. 

  37. Amir A, McDonald D, Navas-Molina JA, Kopylova E, Morton JT, Zech Xu Z, Kightley EP, Thompson LR, Hyde ER et al. (2017) Deblur rapidly resolves single-nucleotide community sequence patterns. MSystems, 2, e00191-00116. https://doi.org/10.1128/mSystems.00191-16. 

  38. Bokulich NA, Kaehler BD, Rideout JR, Dillon M, Bolyen E, Knight R, Huttley GA, Caporaso JG (2018) Optimizing taxonomic classification of marker-gene amplicon sequences with qiime 2's q2-feature-classifier plugin. Microbiome, 6, 1-17. https://doi.org/10.1186/s40168-018-0470-z. 

  39. Caceres MD, Legendre P (2009) Associations between species and groups of sites: Indices and statistical inference. Ecology, 90, 3566-3574. https://doi.org/10.1890/08-1823.1. 

  40. De Caceres M, Legendre P, Moretti M (2010) Improving indicator species analysis by combining groups of sites. Oikos, 119, 1674-1684. https://doi.org/10.1111/j.1600-0706.2010.18334.x. 

  41. Weiland P (2010) Biogas production: Current state and perspectives. Applied Microbiology and Biotechnology, 85, 849-860. https://doi.org/10.1007/s00253-009-2246-7. 

  42. Muhayodin F, Fritze A, Rotter VS (2021) Mass balance of c, nutrients, and mineralization of nitrogen during anaerobic co-digestion of rice straw with cow manure. Sustainability, 13, 11568. https://doi.org/10.3390/su132111568. 

  43. Lee C, Zhao X, Kim JY (2022) Effect of mixing ratio on sewage sludge and septage co-digestion. Journal of Material Cycles and Waste Management, 1-9. https://doi.org/10.1007/s10163-022-01372-2. 

  44. Mata-Alvarez J, Dosta J, Romero-Guiza M, Fonoll X, Peces M, Astals S (2014) A critical review on anaerobic co-digestion achievements between 2010 and 2013. Renewable and Sustainable Energy Reviews, 36, 412-427. https://doi.org/10.1016/j.rser.2014.04.039. 

  45. Gunaseelan VN (1997) Anaerobic digestion of biomass for methane production: A review. Biomass and Bioenergy, 13, 83-114. https://doi.org/10.1016/S0961-9534(97)00020-2. 

  46. Khalid A, Arshad M, Anjum M, Mahmood T, Dawson L (2011) The anaerobic digestion of solid organic waste. Waste Management, 31, 1737-1744. https://doi.org/10.1016/j.wasman.2011.03.021. 

  47. Adekunle KF, Okolie JA (2015) A review of biochemical process of anaerobic digestion. Advances in Bioscience and Biotechnology, 6, 205. https://doi.org/10.4236/abb.2015.63020. 

  48. Kambara H, Dinh HT, Matsushita S, Aoi Y, Kindaichi T, Ozaki N, Ohashi A (2022) New microbial electrosynthesis system for methane production from carbon dioxide coupled with oxidation of sulfide to sulfate. Journal of Environmental Sciences. https://doi.org/10.1016/j.jes.2022.02.029. 

  49. Mei R, Nobu MK, Narihiro T, Liu W-T (2020) Metagenomic and metatranscriptomic analyses revealed uncultured bacteroidales populations as the dominant proteolytic amino acid degraders in anaerobic digesters. Frontiers in Microbiology, 2763. https://doi.org/10.3389/fmicb.2020.593006. 

  50. Tang F, Tian J, Zhu N, Lin Y, Zheng H, Xu Z, Liu W (2022) Dry anaerobic digestion of ammoniated straw: Performance and microbial characteristics. Bioresource Technology, 126952. https://doi.org/10.1016/j.biortech.2022.126952. 

  51. Bovio-Winkler P, Cabezas A, Etchebehere C (2021) Database mining to unravel the ecology of the phylum chloroflexi in methanogenic full scale bioreactors. Frontiers in Microbiology, 3608. https://doi.org/10.3389/fmicb.2020.603234. 

  52. Hao L, Michaelsen TY, Singleton CM, Dottorini G, Kirkegaard RH, Albertsen M, Nielsen PH, Dueholm MS (2020) Novel syntrophic bacteria in full-scale anaerobic digesters revealed by genome-centric metatranscriptomics. The ISME Journal, 14, 906-918. https://doi.org/10.1038/s41396-019-0571-0. 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로