$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

고효율 크기 가변적 입자 분리를 위한 통합 하이브리드 소자
Integrated Hybrid Device for High-Efficiency Size-Tunable Particle Separation 원문보기

Journal of biomedical engineering research : the official journal of the Korean Society of Medical & Biological Engineering, v.43 no.3, 2022년, pp.170 - 176  

추승희 (인천대학교 생명공학부 나노바이오전공) ,  박지온 (인천재능대학교 송도바이오과) ,  김태은 (인천재능대학교 인공지능바이오연구소) ,  강태경 (인천재능대학교 송도바이오과) ,  안준석 (인천재능대학교 송도바이오과) ,  오가영 (인천재능대학교 송도바이오과) ,  김여진 (인천재능대학교 송도바이오생명과) ,  박규빈 (인천재능대학교 송도바이오생명과) ,  박채원 (인천재능대학교 송도바이오생명과) ,  이민정 (인천재능대학교 송도바이오생명과) ,  임현정 (인천재능대학교 인공지능바이오연구소) ,  남정훈 (인천재능대학교 송도바이오과)

Abstract AI-Helper 아이콘AI-Helper

Cell separation from a heterogenous mixture sample is an essential process for downstream analysis in biological, chemical, and clinical applications. This study demonstrates an integrated hybrid device of the viscoelastic focusing in a straight rectangular channel and subsequent size-based separati...

주제어

표/그림 (3)

참고문헌 (47)

  1. Brouzes E, Medkova M, Savenelli N, Marran D, Twardowski M, Hutchison JB, Rothberg JM, Link DR, Perrimon N, Samuels ML. Droplet microfluidic technology for single-cell highthroughput screening. Proc. Nat. Aca. Sci. 2009;106(34):14195-14200. 

  2. Huang NT, Chen W, Oh BR, Cornell TT, Shanley TP, Fu J, Kurabayashi K. An integrated microfluidic platform for in situ cellular cytokine secretion immunophenotyping. Lab Chip. 2012;12:4093-4101. 

  3. Cho H, Kim J, Song H, Sohn KY, Jeon M, Han KH. Microfluidic technologies for circulating tumor cell isolation. Analyst. 2018;143:2936-2970. 

  4. Shields IV CW, Reyes CD, Lopez GP. Microfluidic cell sorting: a review of the advances in the separation of cells from debulking to rare cell isolation. Lab Chip, 2015;15:1230-1249. 

  5. Barret LM, Skulan AJ, Singh AK, Cummings EB, Fiechtner GJ. Dielectrophoretic Manipulation of Particles and Cells Using Insulating Ridges in Faceted Prism Microchannels. Anal. Chem. 2005;77(21):6798-6804. 

  6. Vahey MD, Volman J. An equilibrium method for continuous- flow cell sorting using dielectrophoresis. Anal. Chem. 2008;80(9):3135-3143. 

  7. Hoshino K, Huang YY, Lane N, Huebschman M, Uhr JW, Frenkel EP, Zhang X. Microchip-based immunomagnetic detection of circulating tumor cells. Lab Chip, 2011;11:3449-3457. 

  8. Lai JJ, Nelson KE, Nash MA, Hoffman S, Yager P, Stayton PS. Dynamic bioprocessing and microfluidic transport control with smart magnetic nanoparticles in laminar-flow devices. Lab Chip, 2009;9:1997-2002. 

  9. Leake KD, Phillips BS, Yuzvinsky TD, Hawkins AR, Schmidt H. Optical particle sorting on an optofluidic chip. Opt. Exp. 2013;21(26):32605-32610. 

  10. Minzioni P, Osellame R, Sada C, Zhao S, Omenetto F, Gylfason KB, Haraldsson T, Zhang Y, Ozcan A, Wax A. Roadmap for optofluidics. J. Opt. 2017;19:093003. 

  11. Nam J, Lim H, Kim D, Shin S. Separation of platelets from whole blood using standing surface acoustic waves in a microchannel. Lab Chip, 2011;11:3361-3364. 

  12. Shi J, Mao X, Ahmed D, Colleti A, Huang TJ. Focusing microparticles in a microfluidic channel with standing surface acoustic waves (SSAW). Lab Chip, 2008;8:221-223. 

  13. Shi J, Ahmed D, Mao X, Lin SCS, Lawit A, Huang TJ. Acoustic tweezers: patterning cells and microparticles using standing surface acoustic waves (SSAW). Lab Chip, 2009;9:2890-2895. 

  14. Nam J, Lim H, Kim C, Kang JY, Shin S. Density-dependent separation of encapsulated cells in a microfluidic channel by using a standing surface acoustic wave. Biomicrofluidics, 2012;6(2):024120. 

  15. Zhou J, Giridhar PV, Kasper S, Papautsky I. Modulation of aspect ratio for complete separation in an inertial microfluidic channel. Lab Chip, 2013;13:1919-1929. 

  16. Warkiani ME, Tay AKP, Khoo BL, Xiaofeng X, Han J, Lim CT. Malaria detection using inertial microfluidics. Lab Chip, 2015;15:1101-1109. 

  17. Hur SC, Brinckerhoff TZ, Walthers CM, Dunn JC, Carlo DD. Label-Free Enrichment of Adrenal Cortical Progenitor Cells Using Inertial Microfluidics. Plos One, 2012;7(10):e46550. 

  18. Huang LR, Cox EC, Austin RH, Sturm JC. Continuous Particle Separation Through Deterministic Lateral Displacement. Science, 2004;304(5673):987-990. 

  19. Choi S, Park JK. Continuous hydrophoretic separation and sizing of microparticles using slanted obstacles in a microchannel. Lab Chip, 2007;7:890-897. 

  20. Hsu CH, Carlo DD, Chen C, Irimia D, Toner M. Microvortex for focusing, guiding and sorting of particles. Lab Chip, 2008;8:2128-2134. 

  21. Ho B, Leal L. Migration of rigid spheres in a two-dimensional unidirectional shear flow of a second-order fluid. J. Fluid, Mech. 1976;76(4):783. 

  22. Huang P, Feng J, Hu HH, Joseph DD. Direct simulation of the motion of solid particles in Couette and Poiseuille flows of viscoelastic fluids. J. Fluid Mech. 1997;343:73. 

  23. Karimi A, Yazdi S, Ardekani A. Hydrodynamic mechanisms of cell and particle trapping in microfluidics. Biomicrofluidics, 2013;7:021501. 

  24. Leshansky AM, Branky A, Korin N, Dinnar U. Tunable Nonlinear Viscoelastic "Focusing" in a Microfluidic Device. Phys. Rev, Lett. 2007;98:234501. 

  25. Nam J, Jang WS, Lim CS. Non-electrical powered continuous cell concentration for enumeration of residual white blood cells in WBC-depleted blood using a viscoelastic fluid. Talanta, 2019;197:12-19. 

  26. Kang K, Lee SS, Hyun K, Lee SJ, Kim JM. DNA-based highly tunable particle focuser. Nat. Comm. 2013;4:2567. 

  27. Lim EJ, Ober, TJ, Edd JF, Desai SP, Neal D, Bong KW, Doyle PS, McKinley GH, Toner M. Inertio-elastic focusing of bioparticles in microchannels at high throughput. Nat. Comm. 2014;5:4120. 

  28. Lee DJ, Brenner H, Youn JR, Song YS. Multiplex Particle Focusing via Hydrodynamic Force in Viscoelastic Fluids. Sci. Rep. 2013;3:3258. 

  29. Li D, Lu X, Xuan X. Viscoelastic Separation of Particles by Size in Straight Rectangular Microchannels: A Parametric Study for a Refined Understanding. Anal. Chem. 2016;88(24):12303-12309. 

  30. Nam J, Namgung B, Lim CT, Bae JE, Leo HL, Cho KS, Kim S. Microfluidic device for sheathless particle focusing and separation using a viscoelastic fluid. J. Chrom. A, 2015;1406:244-250. 

  31. Nam J, Lim H, Kim D, Shin S. Separation of platelets from whole blood using standing surface acoustic waves in a microchannel. Lab Chip, 2011;11:3361-3364. 

  32. Lu X, Xuan X. Elasto-Inertial Pinched Flow Fractionation for Continuous Shape-Based Particle Separation. Anal. Chem. 2015;87(22):11523-11530. 

  33. Nam J, Jang WS, Lim CS. Viscoelastic Separation and Concentration of Fungi from Blood for Highly Sensitive Molecular Diagnostics, Sci. Rep. 2019;9:3067. 

  34. Nam J, Shin Y, Tan JKS, Lim YB, Lim CT, Kim S. Highthroughput malaria parasite separation using a viscoelastic fluid for ultrasensitive PCR detection. Lab Chip, 2016;16:2086-2092. 

  35. Nam J. Tan JKS, Khoo BL, Namgung B, Leo HL, Lim CT, Kim S. Hybrid capillary-inserted microfluidic device for sheathless particle focusing and separation in viscoelastic flow. Biomicrofluidics, 2015;9(6):064117. 

  36. Luong TD, Nguyen NT. Surface Acoustic Wave Driven Microfluidics - A Review. Micro Nanosys. 2010;2(3):217-225. 

  37. Shi J, Huang H, Stratton Z, Huang Y, Huang TJ. Continuous particle separation in a microfluidic channelvia standing surface acoustic waves (SSAW). Lab Chip, 2009;9:3354-3359. 

  38. Giudice FD, Madadi H, Villone MM, D'Avino G, Cusano AM, Vecchione R, Ventre M, Maffettone PL, Netti PA. Magnetophoresis 'meets' viscoelasticity: deterministic separation of magnetic particles in a modular microfluidic device. Lab Chip, 2015;15:1912-1922. 

  39. Kim MJ, Lee DJ, Youn JR, Song YS. Two step label free particle separation in a microfluidic system using elasto-inertial focusing and magnetophoresis. RSC Adv. 2016;6:32090-32097. 

  40. Wang K, Zhou W, Lin Z, Cai F, Li F, Wu J, Meng L, Niu L, Zheng H. Sorting of tumour cells in a microfluidic device by multi-stage surface acoustic waves. Sens. Actu. B: Chem. 2018;258:1174-1183. 

  41. Xiang N, Wang J, Li Q, Han Y, Huang D, Ni Z. Precise Size-Based Cell Separation via the Coupling of Inertial Microfluidics and Deterministic Lateral Displacement. Anal. Chem. 2019;91(15):10328-10334. 

  42. Nam J, Kim JY, Lim CS. Continuous sheathless microparticle and cell patterning using CL-SSAWs (conductive liquid-based standing surface acoustic waves). AIP Adv. 2017;7: 015314. 

  43. Nam J. Lim CS. A conductive liquid-based surface acoustic wave device. Lab Chip, 2016;16:3750-3755. 

  44. Tan MK, Tjeung R, Ervin H, Yeo LY, Friend J. Double aperture focusing transducer for controlling microparticle motions in trapezoidal microchannels with surface acoustic waves. Appl. Phys. Lett. 2009;95:134101. 

  45. Gao Y, Wu M, Lin Y, Xu J. Acoustic Microfluidic Separation Techniques and Bioapplications: A Review. Micromachines, 2020;11(10):921. 

  46. Nam J, Jang WS, Lim CS. Micromixing using a conductive liquid-based focused surface acoustic wave (CL-FSAW). Sens. Actu. B: Chemical, 2018;258:991-997. 

  47. Lim H, Back SM, Hwang MH, Lee DH, Choi H, Nam J. Sheathless High-Throughput Circulating Tumor Cell Separation Using Viscoelastic non-Newtonian Fluid. Micromachines, 2019;10(7):462. 

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

이 논문과 함께 이용한 콘텐츠

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로